ENGR 260 Circuits and Devices

Instructor: <u>Prof. Ramki Kalyanaraman</u> Email:kalyanaramanr@smccd.edu Note: Most of the content in the lecture slides that you will access through canvas are proprietary. Please do not share and/or otherwise post it on the web or other social sites without explicit prior approval.

Lesson Objectives and Learning Outcomes

Lesson Objective(s)

- Define Fundamental Quantities: Charge, Voltage, Current, Resistance
- Define Power

Student Learning Outcomes

- Describe relations between fundamental quantities
- Perform basic computations involving fundamental quantities.

Lesson Content Ch 2 Sec 2.1 – 2.5

- 1. Introduction
- 2. What is a Circuit?
- 3. Charge, Current, Voltage
- 4. System of Units
- 5. Power and Energy

Solar Farm at Cañada College

Making Electricity from Sunlight

Science of Photovoltaics (PV)

- Highly purified silicon (Si) from sand, quartz, etc. is "doped" with intentional impurities at controlled concentrations to produce a p-n junction
 - p-n junctions are common and useful: diodes, CCDs, photodiodes, transistors

Science of Photovoltaics (PV)

- Highly purified silicon (Si) from sand, quartz, etc. is "doped" with intentional impurities at controlled concentrations to produce a p-n junction
 - p-n junctions are common and useful: diodes, CCDs, photodiodes, transistors
- A photon incident on the p-n junction liberates an electron
 - photon disappears, any excess energy goes into kinetic energy of electron (heat)
 - electron wanders around drunkenly, and might stumble into "depletion region" where electric field exists (electrons, being negative, move *against* field arrows)
 - electric field sweeps electron across the junction, constituting a current
 - more photons \rightarrow more electrons \rightarrow more current \rightarrow more power

PV cells Provide a circuit for the electron flow

- Without a path for the electrons to flow out, charge would build up and end up canceling electric field
 - must provide a way out
 - direct through external load
 external load
 external load
 external load

What is a circuit?

- Circuit: Any path along which electrons can flow
 - Electrons will only flow if the circuit is complete with no gaps

What is a circuit?

- Circuit: Any path along which electrons can flow
 - Electrons will only flow if the circuit is complete with no gaps
 - > An electric circuit is an interconnection of electrical elements.
 - It may consist of only two elements or many more:

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

- Charge is an electrical property of the atomic particles of which matter is made from.
 - Charge is a derived SI unit, measured in Coulombs (C)
- Counts the number of electrons (or positive charges) present.

- Charge is an electrical property of the atomic particles of which matter is made from.
 - Charge is a derived SI unit, measured in Coulombs (C)
- Counts the number of electrons (or positive charges) present.
- Charge of single electron is: 1.602x10⁻¹⁹ C
- How many electrons does 1 C contain?

- Charge is an electrical property of the atomic particles of which matter is made from.
 - Charge is a derived SI unit, measured in Coulombs (C)
- Counts the number of electrons (or positive charges) present.
- Charge of single electron is: 1.602x10⁻¹⁹ C
- How many electrons does 1 C contain?
 - One Coulomb is quite large: 6.023x10¹⁸ electrons.

- Charge is an electrical property of the atomic particles of which matter is made from.
 - Charge is a derived SI unit, measured in Coulombs (C)
- Counts the number of electrons (or positive charges) present.
- Charge of single electron is: 1.602x10⁻¹⁹ C
- How many electrons does 1 C contain?
 - One Coulomb is quite large: 6.023x10¹⁸ electrons.
- Charge cannot be created or destroyed, only transferred.
- Example: In the lab, one typically sees
 - $pC = 10^{-12} C$
 - $nC = 10^{-9} C$
 - $\mu C = 10^{-6} C$

Electric Current

- The movement of charge is called a current
- Historically the moving charges were thought to be positive

Electric Current

- The movement of charge is called a current
- Historically the moving charges were thought to be positive
- Thus we <u>always note the direction of the</u> <u>equivalent positive charges</u>, even if the moving charges are negative.

Battery

Direction of current

- The sign of the current indicates the direction in which the positive charge is moving with reference to the direction of interest we define.
- A positive current through a component is the same as a negative current flowing in the opposite direction.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Charge (Q or q) and Current (I or i)

Electric Current, *i*, is the time rate of change of charge, measured in Amperes (A)

$$i = \frac{dq}{dt}$$

© Apic/Getty Images

Andre-Marie Ampere (1775-1836) French Mathematician and Physicist, Inventor: Electromagnet, Ammeter

Charge (Q or q) and Current (I or i)

Electric Current, *i*, is the time rate of change of charge, measured in Amperes (A)

$$i = \frac{dq}{dt}$$

- Alternate Form (generally for DC)
 - I = Q/t
- Unit is Ampere (A)
 - 1 Ampere = 1 Coulomb/ 1 second

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

© Apic/Getty Images

Andre-Marie Ampere (1775-1836) French Mathematician and Physicist, Inventor: Electromagnet, Ammeter

SI system of Units

Fundamental units in the SI system: meter (m), kilogram (kg), second (s), ampere (A). also: kelvin, mole, and candela Derived Units in SI: Any combination of the fundamental units

Quantity	Basic unit	Symbol
Length	meter	m
Mass	kilogram	kg
Time	second	S
Electric current	ampere	Α
Thermodynamic temperature	kelvin	K
Luminous intensity	candela	cd
Charge	coulomb	С

SI system of Units

Fundamental units in the SI system: meter (m), kilogram (kg), second (s), ampere (A). also: kelvin, mole, and candela Derived Units in SI: Any combination of the fundamental units

Basic unit	Symbol
meter	m
kilogram	kg
second	S
ampere	А
kelvin	K
candela	cd
coulomb	С
- -	Basic unit meter kilogram second ampere kelvin candela coulomb

Q. How can Charge C be obtained from the basic units?

SI: Units and Prefixes

Any measurement can be expressed in terms of a unit, or a unit with a "prefix" modifier.

FACTOR	NAME	SYMBOL
10 -9	nano	n
10-6	micro	μ
10 -3	milli	m
10 ³	kilo	k
10 ⁶	mega	М

SI: Units and Prefixes

Any measurement can be expressed in terms of a unit, or a unit with a "prefix" modifier.

FACTOR	NAME	SYMBOL
10-9	nano	n
10-6	micro	μ
10-3	milli	m
10 ³	kilo	k
10 ⁶	mega	М

Example: 12.3 mW = 0.0123 W = 1.23 x 10⁻² W

Exercise 1: Units and Dimensions

 Prefixes on SI units allow for easy relationships between large and small values

• Examples

- 1) How can 2,000,000 V be best expressed?
 - a) 2 mV
 - b) 2 kV
 - c) 2 MV
 - d) 2 GV
- 2) What is the best way to express 1000 nanometers?
 - a) 10⁻⁹ m; b) 10⁻⁶ m; (c) 10⁻³ m

Multiplier	Prefix	Symbol
10 ¹⁸	exa	Е
10 ¹⁵	Peta	Р
1012	Tera	Т
109	Giga	G
106	Mega	М
10 ³	Kilo	k
10 ²	Hecto	h
10	Deka	da
10-1	Deci	d
10-2	Centi	c
10-3	Milli	m
10 ⁻⁶	micro	μ
10 ⁻⁹	nano	n
10 ⁻¹²	pico	P
10 ⁻¹⁵	femto	f
10-18	atto	а

Answer to Exercise 1

- Prefixes on SI units allow for easy relationships between large and small values
- Examples
- 1) How can 2,000,000 V be best expressed?
 - a) 2 mV
 - b) 2 kV
 - c) 2 MV d) 2 GV
- 2) What is the best way to express 1000 nanometers?
 - a) 10⁻⁹ m; b) 10⁻⁶ m; (c) 10⁻³ m

Multiplier	Prefix	Symbol
1018	exa	Е
1015	Peta	Р
10 ¹²	Tera	Т
10 ⁹	Giga	G
106	Mega	М
10 ³	Kilo	k
10 ²	Hecto	h
10	Deka	da
10-1	Deci	d
10-2	Centi	c
10-3	Milli	m
10 ⁻⁶	micro	μ
10 ⁻⁹	nano	n
10-12	pico	P
10-15	femto	f
10-18	atto	a

Exercise 2

The charge entering a certain element is shown in the figure. Find the current at:

(c) t = 10 ms

Solution to Exercise 2

The charge entering a certain element is shown in the figure. Find the current at:

Answers
(a) at t = 1 ms,
$$i=dq/dt = 30/2 = 15 A$$

(b) at t = 6 ms, $i=dq/dt = 0 A$
(c) at t = 10 ms, $i=dq/dt = (0-30)/(12-8) = -7.5 A$

• Electrons move when there is a difference in charge between two locations.

- Electrons move when there is a difference in charge between two locations.
- <u>Voltage</u>: Is energy/work that pushes the charge through the circuit (in this picture it would be equivalent to potential energy)

- Electrons move when there is a difference in charge between two locations.
- Voltage or potential difference is the work or energy to move unit charge between points A and B and is measured in Volts (V)
 - 1 Volt = 1 Joule/ 1 Coulomb
 - Alternate Form: $V_{BA} = V_B V_A = W/Q$

Alessandro Volta (1745-1827) Italian Physicist – invented the battery

- Electrons move when there is a difference in charge between two locations.
- Voltage or potential difference is the work or energy to move unit charge between points A and B and is measured in Volts (V)
 - 1 Volt = 1 Joule/ 1 Coulomb
 - Alternate Form: $V_{BA} = V_B V_A = W/Q$
- Voltage is always expressed with reference to two locations
 - Positive charge moving from a higher potential to a lower yields energy.
 - Moving from negative to positive requires energy.

Alessandro Volta (1745-1827) Italian Physicist – invented the battery

Exercise 3 (1.4.1)

100 joules are expended to move a 20 coulomb charge from point *A* to point *B*. Determine the resulting voltage.

Solution to Exercise 3 (1.4.1)

100 joules are expended to move a 20 coulomb charge from point *A* to point *B*. Determine the resulting voltage.

Solution

$$V_{BA} = W/Q$$

 $V_{BA} = 100 \text{ J} / 20 \text{ C} = 5 \text{ V}$

Power (P) and Energy (W)

- Power is the product of voltage and current
 - p=V.I

Power (P) and Energy (W)

- Power is the product of voltage and current
 - p=V.I
- It is also equal to the rate of <u>energy or work</u> provided or consumed per unit time.
 - p=dW/dt or W/t -> here dW or W represents energy/work
 - It is measured in Watts (W)
 - Alternate Form: P = W/t

Units of Power (P)

- You will/could encounter different units for power
- Unit 1: power = voltage-ampere (from p = VI)

Units of Power (P)

- You will/could encounter different units for power
- Unit 1: power = voltage-ampere (from p = VI)
- Unit 2: The Watt
 - 1 Watt = 1 Joule/ 1 second

Units of Power (P)

- You will/could encounter different units for power
- Unit 1: power = voltage-ampere (from p = VI)
- Unit 2: The Watt
 - 1 Watt = 1 Joule/ 1 second
- Unit 3: The Horsepower (hp)
 - 1 hp =760 Watts

Exercise 4

1. The figure shows the current through and voltage across an element. Find the total energy absorbed by the element for the period of 0 < t < 4 s.

Solution to Exercise 4 1

1) Lets express forms of i(t)

- i(t) = 30t mA, 0 < t < 2
- i(t) = 120-30t mA , 2 < t <
 4</pre>

Solution to Exercise 4 ²

1) Lets express forms of i(t)

- i(t) = 30t mA, 0 < t < 2
- i(t) = 120-30t mA , 2 < t <
 4</pre>
- 2) Lets express form of v(t)
 - v(t) = 5 V, 0 < t < 2
 - v(t) = 5V, 2 < t < 4

Solution to Exercise 4 3

1) Now the power vs t is:

- p(t) = i(t)v(t) = 150t mW, 0
 < t < 2</pre>
- p(t) = -600+150t mW, 2 <
 t < 4</pre>

Solution to Exercise 4 4

1) Now the power vs t is:

- p(t) = -600+150t mW, 2 <
 t < 4</pre>
- 2) Finally, the energy abosrbed can be obtained from the graph as:

$$W = \int_{0}^{4} p dt$$

= 0 W

Lecture Wrap-up

- Please read the syllabus file on canvas
- Please read/reread the relevant textbook sections and/or the lesson slides/notes
- Remember to work through all example problems in textbook
- Make sure to follow up on any relevant HW or quiz related to this content