STATS 100A Final

Problem 1 Consider a probability density f(x), where $f(x) = ax^2$ for $x \in [0, 1]$, and f(x) = 0 for $x \notin [0, 1]$.

- (1) Calculate a.
- (2) Calculate $P(X \ge 1/2)$.
- (3) Calculate E(X) and Var(X).
- (4) Suppose we generate $X_i \sim f(x)$ for i = 1, ..., n independently. Let

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

What are $E(\bar{X})$ and $Var(\bar{X})$? According to the law of large number, \bar{X} will converge to a fixed value in probability. What is this value?

(5) Continue from (4). According to the central limit theorem, for n = 100, what is the approximate distribution of \bar{X} ? Write down the 95% probability interval [a, b], so that $P(\bar{X} \in [a, b]) = 95\%$.

Problem 2 Suppose we divide the time interval [0, t] into n equally spaced periods so that $\Delta t = t/n$. Consider a particle following a random walk, starting from $X_0 = 0$, and within each period i = 1, 2, ..., n, the particle moves by Z_i , so that

$$X_t = \sum_{i=1}^n Z_i$$

and

$$Z_i = \mu \Delta t + \sigma \sqrt{\Delta t} \epsilon_i,$$

where $E(\epsilon_i) = 0$ and $Var(\epsilon_i) = 1$, and ϵ_i are independent. μ and σ are constants.

- (1) Calculate $E(Z_i)$ and $Var(Z_i)$.
- (2) Calculate $E(X_t)$ and $Var(X_t)$. Do they depend on n?
- (3) For large n, what is the approximate distribution of X_t ?

Problem 3 Suppose we observe $(X_i, Y_i) \sim f(x, y)$ independently for i = 1, ..., n. Let $\overline{X} = \sum_{i=1}^{n} X_i/n$, and $\overline{Y} = \sum_{i=1}^{n} Y_i/n$. Let $\widetilde{X}_i = X_i - \overline{X}$, and $\widetilde{Y}_i = Y_i - \overline{Y}$. Let \mathbf{X} be the vector formed by $(\widetilde{X}_i, i = 1, ..., n)$, and \mathbf{Y} be the vector formed by $(\widetilde{Y}_i, i = 1, ..., n)$. For the following scatterplots of $(X_i, Y_i), i = 1, ..., n$, where each (X_i, Y_i) is a point,

(1) Write down the possible value of correlation for each scatterplot.

(2) Plot the vectors of \mathbf{X} and \mathbf{Y} for each scatterplot.

(3) Plot the regression line $\tilde{Y} = \beta \tilde{X}$ on each scatterplot. Let $e_i = \tilde{Y}_i - \beta \tilde{X}_i$, and let **e** be the vector formed by $(e_i, i = 1, ..., n)$. Suppose β is obtained by minimizing $|\mathbf{e}|^2 = \sum_{i=1}^n e_i^2$ (the so-called least squares estimation). Plot $\beta \mathbf{X}$ and **e** for each vector plot in (2).