Mid-term Exam 1: PHYSICS 1C (Spring 2021)

Time: 2:00PM – 3:00PM, April 15, 2020, Instructor: Prof. Zhongbo Kang

Student Name:

Student I.D. Number:

Exam Version: A

Note:

- Please make sure that you have *read, signed and uploaded* your "student verification form", <u>without which your exam will not be graded</u>.
- The exam time (in total 1 hour) is designed in such a way that ideally the actual time for answering the problems is 30 minutes, while the remaining 30 minutes are used to scan and upload your solution to gradescope.
- The exam is open book, and open notes. One page of physical equations is provided. You can use a calculator.
- Remember to write down each step of your calculations, for partial credits.

Score Sheet:

Problem 1 (8 points):

Problem 2 (10 points):

Problem 3 (7 points):	
-----------------------	--

Total (25 points):

Formula Sheet

 $\vec{F} = q\vec{\upsilon} \times \vec{B}$ (magnetic force on a moving charged particle) $\Phi_{B} = \int B \cos \phi \, dA = \int B_{\perp} \, dA = \int \vec{B} \cdot d\vec{A} \quad \text{(magnetic flux through a surface)}$ $\int \vec{B} \cdot d\vec{A} = 0 \quad \text{(Gauss's law for magnetism)}$ $R = \frac{m\nu}{|q|B}$ (radius of a circular orbit in a magnetic field) $\vec{F} = I\vec{l} \times \vec{B}$ (magnetic force on a straight wire segment) $d\vec{F} = Id\vec{l} \times \vec{B}$ (magnetic force on an infinitesimal wire section) $\tau = IBA\sin\phi$ (magnitude of magnetic torque on a current loop) $\vec{\tau} = \vec{\mu} \times \vec{B}$ (vector magnetic torque on a current loop) $U = -\vec{\mu} \cdot \vec{B} = -\mu B \cos \phi$ (potential energy for a magnetic dipole) $\vec{B} = \frac{\mu_0}{4\pi} \frac{q\vec{v} \times \hat{r}}{r^2}$ (magnetic field due to a point charge with constant velocity) $d\vec{B} = \frac{\mu_0}{4\pi} \frac{Id\vec{l} \times \hat{r}}{r^2} \quad \text{(magnetic field due to an infinitesimal current element)}$ $B = \frac{\mu_0 I}{2\pi r}$ (magnetic field near a long, straight, current-carrying conductor) $\frac{F}{I} = \frac{\mu_0 II'}{2\pi r}$ (two long, parallel, current-carrying conductors) $\int \vec{B} \cdot d\vec{l} = \mu_0 I_{encl}$ (Ampere's law)

Problem 1 (8 pts)

Please *be very careful* in writing down your answers for these two questions. They are graded by the final answers ONLY, no partial credits for any intermediate steps. Magnetic field B generated

a) (3 pts) In the figure, two positive charges q₁ and q₂ move at the same speed v, but in the opposite direction. q₁ is moving along – x, while q₂ is along +x direction. Determine the direction of the electric force F_E and magnetic force F_B on the upper charge q₂. Your choice: <u>O</u>.

a. both along +y

- b. both along -y
- d. F_E is -y, F_B is +y
- e. F_E is +y, F_B is +z
- g. none of the above
- b) (5 pts) A solid conductor with radius a is supported by insulating disks on the axis of a conducting tube with inner radius b and outer radius c, see the figure. The central conductor and tube carry currents I_1 and I_2 correspondingly in the opposite direction. The currents are distributed uniformly over the cross sections of each

y g_1 ort q_2 : $q_2 \rightarrow \vec{v} \otimes B$ Thus $\overrightarrow{FB1}$

c. F_E is +y, F_B is -y both positive f. F_E is +y, F_B is -z thus f. F_E

 $F_E: q_1, q_2$ are

conductor. Derive an expression for the magnitude and specify the direction of the magnetic field at points outside the central, solid conductor but inside the tube, i.e., a < r< b. Express your answer in terms of the given variables I_1 , I_2 , r, a, b, c.

Magnitude (3 pts): Direction (2 pts): <u>Counter clockwise</u> (shown in the plot).

Problem 2 (10 pts)

Please make sure to write down *intermediate steps* of your calculations, for partial credits.

The wire semicircles shown in the figure have radii a and **b**. The current inside the wire is given by **I**. Let us divide the wire into four pieces: horizontal piece [12], the small semicircle [23], horizontal piece [34], and the large semicircle [41]. Now a constant uniform magnetic field \vec{B} ,

is uniformly distributed in the entire space and pointing upward vertically as shown in the figure. Please answer the following questions (specify the magnitude and direction)

 \vec{B}

- a) (8 pts) find the magnetic force on each of the four wire segments: [12], [23], [34], and [41].
- b) (2 pts) what is the net force on the entire loop?

a)
$$[12]: \vec{F}_{[12]} = \int I d\vec{L} \times \vec{B} = I d\vec{L}_{[12]} B (-\hat{k}) = -I (-a)B\hat{k}$$
.
 $[23]: \vec{F}_{[23]} = \int I d\vec{J} \times \vec{B} = \int_{0}^{T} I a d\theta B \sinh \theta (-\hat{k})$
 $= -2IaB\hat{k}$.
 $[34]: \vec{F}_{[34]} = \vec{F}_{[12]} = -I(-a)B\hat{k}$.
 $[41]: \vec{F}_{[24]} = \int I d\vec{L} \times \vec{B} = \int_{0}^{T} I b d\theta B \sinh \theta \hat{k}$
 $= 2IbB\hat{k}$.
b) $\vec{F} = \vec{F}_{[12]} + \vec{F}_{[23]} + \vec{F}_{[34]} + \vec{F}_{[41]} = 0N$.

Problem 3 (7 pts)

Please make sure to write down *intermediate steps* of your calculations, for partial credits.

A very long, cylindrical wire of radius R carries a current I_0 uniformly distributed across the cross section of the wire, as shown in the figure.

(a) (3 pts) For the yellow strip that has distance r away from the center O, please compute the magnetic field that goes into the strip.

(b) (4 pts) Calculate the magnetic flux through the entire rectangle that has a length W.

a.) We can use Ampere's Law to compute
$$\vec{B}$$
!
Ampere Loop
 $\oint \vec{B} \cdot d\vec{L} = \mu_0 I_{enc}$
We need to calculate I enc " $\sigma = \frac{T}{4} \rightarrow$ we know I, is uniformly directed over the cross section of the wire
 $\rightarrow Cross Science Loop = \frac{T}{4} \rightarrow we know I, is uniformly directed over the cross section of the wire
 $\rightarrow Cross Science Loop = \frac{T}{nR^2}$
 $\rightarrow I_{ox} = \sigma \cdot aA$
 $L \rightarrow Cross sectional area of the Ampere Loop: $bA = mr^2$
 $\rightarrow I_{onc} = \sigma \cdot m^2$
 $= \frac{T}{nR^2} - mr^2$
 $So: \sqrt{B} \cdot d\vec{l} = \frac{\mu_0 I_0 r^2}{R^2}$
 $B(Drop) = \frac{\mu_0 I_0 r^2}{R^2}$$$

b) We need to use $\overline{\Phi}_{B} = \overline{B} \cdot \overline{A}$ $\Rightarrow d \overline{\Phi}_{B} = \overline{B} \cdot d\overline{A} \Rightarrow \overline{\Phi}_{B} = \int_{S} \overline{B} \cdot d\overline{A} \Rightarrow dA = W \cdot dr$ (Area of a teeny strip of the rectangle with width dr $\overline{\Phi}_{B} = \int_{0}^{R} B \cdot W dr = \int_{0}^{R} \frac{\mu_{0} I_{v} W \Gamma}{2\pi r R^{2}} dr = \frac{\mu_{0} I_{0} W}{2\pi r R^{2}} \int_{0}^{R} r dr = \frac{\mu_{0} I_{0} W}{4\pi R^{2}} r^{2} \int_{0}^{R} = \frac{\mu_{0} I_{0} W R^{2}}{4\pi R^{2}}$ $\left(\overline{\Phi}_{B} = \frac{\mu_{0} I_{0} W}{4\pi r}\right)$

(Alternative time) Mid-term Exam 1: PHYSICS 1C (Spring 2021)

Time: 6:00PM – 7:00PM, April 15, 2021, Instructor: Prof. Zhongbo Kang

Student Name: _____

Student I.D. Number:

Exam Version: A

Note:

- Please make sure that you have *read, signed and uploaded* your "student verification form", <u>without which your exam will not be graded</u>.
- The exam time (in total 1 hour) is designed in such a way that ideally the actual time for answering the problems is 30 minutes, while the remaining 30 minutes are used to scan and upload your solution to gradescope.
- The exam is open book, and open notes. One page of physical equations is provided. You can use a calculator.
- Remember to write down each step of your calculations, for partial credits.

Score Sheet:

Problem 1 (8 points):

Problem 2 (10 points):

Problem 3 (7 points):	
-----------------------	--

Total (25 points):

Formula Sheet

 $\vec{F} = q\vec{\upsilon} \times \vec{B}$ (magnetic force on a moving charged particle) $\Phi_{B} = \int B \cos \phi \, dA = \int B_{\perp} \, dA = \int \vec{B} \cdot d\vec{A} \quad \text{(magnetic flux through a surface)}$ $\int \vec{B} \cdot d\vec{A} = 0 \quad \text{(Gauss's law for magnetism)}$ $R = \frac{m\nu}{|q|B}$ (radius of a circular orbit in a magnetic field) $\vec{F} = I\vec{l} \times \vec{B}$ (magnetic force on a straight wire segment) $d\vec{F} = Id\vec{l} \times \vec{B}$ (magnetic force on an infinitesimal wire section) $\tau = IBA\sin\phi$ (magnitude of magnetic torque on a current loop) $\vec{\tau} = \vec{\mu} \times \vec{B}$ (vector magnetic torque on a current loop) $U = -\vec{\mu} \cdot \vec{B} = -\mu B \cos \phi$ (potential energy for a magnetic dipole) $\vec{B} = \frac{\mu_0}{4\pi} \frac{q\vec{v} \times \hat{r}}{r^2}$ (magnetic field due to a point charge with constant velocity) $d\vec{B} = \frac{\mu_0}{4\pi} \frac{Id\vec{l} \times \hat{r}}{r^2}$ (magnetic field due to an infinitesimal current element) $B = \frac{\mu_0 I}{2\pi r}$ (magnetic field near a long, straight, current-carrying conductor) $\frac{F}{I} = \frac{\mu_0 II'}{2\pi r}$ (two long, parallel, current-carrying conductors) $\int \vec{B} \cdot d\vec{l} = \mu_0 I_{encl}$ (Ampere's law)

Problem 1 (8 pts)

Please *be very careful* in writing down your answers for these two questions. They are graded by the final answers ONLY, no partial credits for any intermediate steps.

- a) (4 pts) The right figure shows, in cross section, several conductors that carry current through the plane of the figure. Four paths labeled a through *d*, are shown. The line integrals $\oint \vec{B} \cdot d\vec{l}$ over each path (*a*, *b*, $I_1 \otimes$ b, c, d) are given by A, B, C, D. Note: each integral involves *I*₃ going around the path in the *counterclockwise* direction. Counter rlockwise Express A/B/C/D in terms of I_1 , I_2 , I_3 :
 - A: 0B: $-\mu_0 I_1$ C: $\mu_0 (I_2 I_1)$ D: $\mu_0 (I_2 + I_3 I_1) e^{-\beta} I_1$ generates B field Clockwise. $\mu_0 I_2 I_1$ D: $\mu_0 (I_2 + I_3 I_1) e^{-\beta} I_1$ generates B field Clockwise.
- b) (4 pts) Shown in the right figure is an end-on view of two long, straight, parallel wires perpendicular to the xy-plane, each carrying a current I but in opposite directions (as indicated by cross and dot in the figure), with d the distance between the relevant vertical lines. What are the directions of \vec{B} field at points P_1 and P_2 ? Your choice: 🗘
 - $\uparrow^{B_2=\frac{\mu_0I}{2}}$ P_1 wire 2 wire 1
 - a. P_1 : -y, P_2 : +y b. P_1 : -y, P_2 : undetermined
 - f. none of above

c. P_1 : +y, P_2 : +y

d. $P_1: -y, P_2: 0$ e. $P_1: 0, P_2: +y$

Problem 2 (10 pts)

Please make sure to write down *intermediate steps* of your calculations, for partial credits.

The wire semicircles shown in the figure have radii a and b. The current inside the wire is given by I. Let us divide the wire into four pieces: horizontal piece [12], the small semicircle [23], horizontal piece [34], and the large semicircle [41]. Now a constant uniform magnetic field \vec{B} ,

is uniformly distributed *in the entire space* and pointing downward vertically as shown in the figure. Please answer the following questions (specify the magnitude and direction)

 \vec{B}

- a) (8 pts) find the magnetic force on each of the four wire segments: [12], [23], [34], and [41].
- b) (2 pts) what is the net force on the entire loop?

(a)
$$[12]: \vec{F}_{L(2)} = \int I dT \times \vec{B} = \int I L_{L(2)} B(\vec{k}) = I(b-a)B\hat{k}.$$

 $[23]: \vec{F}_{[23]} = \int I dT \times \vec{B} = \int_{0}^{T} I a d\theta B \sin\theta(\vec{k})$
 $= 2IaB\hat{k}.$
 $[34]: \vec{F}_{[34]} = \vec{F}_{[12]} = I(b-a)B\hat{k}.$
 $[41]: \vec{F}_{[41]} = \int I dT \times \vec{B} = \int_{0}^{T} I b d\theta B \sin\theta(-\hat{k})$
 $= -2IbB\hat{k}.$

b)
$$\vec{F} = \vec{F}_{[12]} + \vec{F}_{[23]} + \vec{F}_{[34]} + \vec{F}_{[41]} = 0 N$$
. 4

Problem 3 (7 pts)

Please make sure to write down *intermediate steps* of your calculations, for partial credits.

A very long, cylindrical wire of radius R carries a current I_0 uniformly distributed across the cross section of the wire, as shown in the figure.

(a) (3 pts) For the yellow strip that has distance r away from the center O_r please compute the magnetic field that goes into the strip.

(b) (4 pts) Calculate the magnetic flux through the entire rectangle that has a length W. (Hint:

recall the definition of magnetic flux: $\Phi_B = \int \vec{B} \cdot d\vec{A}$, here $d\vec{A}$ is the area element. can use Amperi's Law to compute B! a.) We

> Jen = OMr2 $S_{0}:\oint \overline{B}\cdot d\overline{l} = \underbrace{\mu_{\sigma} J_{\sigma} \mathcal{H} r^{2}}_{\mathcal{H} \mathcal{R}^{2}} = \underbrace{\mu_{\sigma} J_{\sigma} r^{2}}_{\mathcal{Q} 2}$ B(2np) = MoJor# $= \frac{\beta}{\beta} = \frac{\mu_0 I_0 \Gamma}{2\pi \rho^2}$

b) We need to use $\overline{\Phi}_{\mathbf{R}} = \vec{B} \cdot \vec{A}$

 \Rightarrow $d\Phi_B = \vec{B} \cdot d\vec{A} \rightarrow \vec{\Phi}_B = \int_{S} \vec{B} \cdot d\vec{A} \rightarrow dA = W \cdot dr$ (Area of a teeny strip of the rectangle with width dr $\overline{\Phi}_{g} = \int_{0}^{R} B \cdot W dr = \int_{0}^{R} \frac{\mu_{0} I_{*} W \Gamma}{2\pi R^{2}} dr = \frac{\mu_{0} I_{0} W}{2\pi R^{2}} \int_{0}^{R} r dr = \frac{\mu_{0} J_{0} W}{4\pi R^{2}} r^{2} \int_{0}^{R} = \frac{\mu_{0} J_{0} W R^{2}}{4\pi R^{2}}$ The = MOIOW