Physics 1C: Midterm 2

PROBLEM 1

Muthupal.

You must show your work to receive credit. An answer written down with no work will receive no credit.

Problem 1

40 points

Suppose you find or develop a material within which there can be **no magnetic field** (a superconductor, maybe). You send an electromagnetic (EM) plane wave in vacuum towards the surface of this material, with electric field

$$
\vec{E}_I = E_I \cos(kz - \omega t)\hat{x}.
$$

All answers in this problem should be in terms of the constants E_1 , k, ω , and/or c (speed of light in vacuum).

$(a): 5$ pts

Write down the magnetic field (magnitude $\&$ direction) of the incident wave.

(b) : 5 pts

Is there any EM wave inside of the material? If so, write down its electric and magnetic fields.

$(c): 8$ pts

Write down the electric and magnetic fields (magnitude $\&$ direction) of the reflected wave.

After it has been reflected:

\n
$$
E_R = E_1 \cos(\omega + kz)
$$
\n
$$
B_R = E_1 \cos(\omega + kz)
$$
\n
$$
C = \frac{E_1 \cos(\omega + kz)}{c}
$$
\ndivection = -y

\n
$$
C = \frac{E_1 \cos(\omega + kz)}{c}
$$
\nwe just the two cases.

(d) : 7 pts

Write down the *total* electric and magnetic fields outside the material. You may simplify the result using trig identities. \overline{a} ~ 10 $\ddot{}$ \overline{a} $\overline{}$

$$
E_{\text{TOI}} = E_{1} \left[\cos(\omega t - k\vec{z}) + \cos(\omega t + k\vec{z}) \right] \times
$$

\n
$$
\cos(A \pm B) = \cos A \cos B + \sin A \sin B
$$

\n
$$
E_{\text{TOI}} = E_{1} \left[\cos(\omega t) \cos(\kappa z) + \sin(\omega t) \sin(kz) + (\cos(\omega t) \cos(kz) - \sin(\omega t) \sin(kz)) \right]
$$

\n
$$
E_{\text{TOI}} = 2 E_{1} \cos(\omega t - kz) - \cos(\omega t + kz)
$$

\n
$$
B_{\text{TOI}} = 2 E_{1} \sin(\omega t) \sin(kz) \hat{y}
$$

(e):
$$
7 \text{ pts}
$$

Write down the Poynting vector outside the material.

 \overline{C}

$$
S = \frac{1}{\mu_0} \mathbf{E} \times \mathbf{B} \longrightarrow \text{cross } \mathbf{E}_{\text{tot}} \times \mathbf{B}_{\text{rot}} \quad \text{and} \quad \mathbf{X}
$$

$$
S = \frac{1}{\mu_0} \left[\mu \underbrace{\mathbf{E}_2^2}_{C} \sin(\omega t) \sin(kz) \cos(\omega t) \cos(kz) \right] \times
$$

 $\hat{x} \times \hat{y} = \hat{z}$

(f) : 8 pts

What is the intensity of the wave outside of the material?

We can take the time average of the lover a
full period. The time average of the lover a The avg becomes O because of the sins& the cos's. $I = S_{av} = 0$

Problem 2

30 pts

Consider a circuit consisting of a resistor, a capacitor, and an inductor all connected in series, driven by an AC source of fixed magnitude and variable frequency ω . The resistance of the resistor is R, the capacitance of the capacitor is C , and the inductance of the inductor is L . For this problem, you may use without proof any result for impedance derived in lecture, homework, or discussion.

$(a): 5$ pts

What is the impedance of this circuit? Express your answers in terms of R, L, C , and ω .

$$
Z = \sqrt{R^{2} + (X_{L} - X_{C})^{2}}
$$
\n
$$
X_{L} = \frac{1}{\omega C}
$$
\n
$$
S_{0} = \sqrt{R^{2} (\omega L - \frac{1}{\omega C})^{2}}
$$

(from discussion week 5 too)

(b) : 15 pts

At what frequencies ω_+ , ω_- will the amplitude of the current through the circuit equal one-third the maximum amplitude of current that can flow through the circuit? Express your answers in terms of the given parameters. [HINT 1: What does the impedance need to be for this condition to hold?]. [HINT 2: Make sure your frequencies are positive! 5 $\sqrt{2}$

To maximize 1 from
$$
x = \frac{v}{\epsilon}
$$
, z must be z_{min} . So,
\n z_{min} such $w_{k} = \frac{1}{w_{k}}z$
\n z_{min} such $w_{k} = \frac{1}{w_{k}}$
\n z_{min} such $w_{k} = \frac{1}{w_{k}}$
\n z_{min} such $w_{k} = \frac{1}{w_{k}}$
\n z_{min} such that $z = R$
\n z_{min} will $w_{k} = R\sqrt{8}$ we $w_{k} = -R\sqrt{8}$
\n $w_{k} = R\sqrt{8}$ we $w_{k} = -R\sqrt{8}$
\n $w_{k} = 1 = 0$
\n $w_{k} = \frac{-\sqrt{2}CR + \sqrt{C(1+2CR^{2})}}{LC}}$
\n $3R = \frac{R}{R^{2} + (w_{k} - w_{k})^{2}}$
\n $4R^{2} = R^{2} + (w_{k} - w_{k})^{2}$
\n $W_{k} = \frac{\sqrt{2}CR + \sqrt{C(1+2CR^{2})}}{LC}$
\n $W_{k} = \frac{\sqrt{2}CR + \sqrt{C(1+2CR^{2})}}{LC}$
\n $W_{k} = \frac{\sqrt{2}CR + \sqrt{C(1+2CR^{2})}}{LC}$
\n $W_{k} = \frac{\sqrt{2}CR - \$

Problem 2 continued on next page...

(c) : 10 pts

Describe what changes could be made to R , L , and/or C in order to *double* the maximum possible amount of current flowing through the circuit.

To double: Imax happens at
$$
I = \frac{V}{R}
$$

\n
$$
2I_{max} = 2\frac{V}{R} = \frac{V}{\frac{1}{Z}R}
$$
\nwe could half our resistance

Problem 3

30 pts

Consider two beams of light, of wavelengths λ_1 and λ_2 . The light initially travels through some material with index of refraction $n_1(\lambda) = 1 + e^{-\lambda/\lambda_0}$. Both rays are incident on a second material of refractive index $n_2(\lambda) = 2 + e^{-\lambda/\lambda_0}$ at an angle θ_i . Part of the light is reflected, and part of the light is refracted. [Here λ_0 is some fixed wavelength characteristic of the materials.]

(a) : 10 pts

At what angle does each beam of light reflect off of the second material?

of Reflection tells us that $\theta_Y = \theta_1$ The Law Oi is the angle of reflection. So both
reflect off at an angle of Oi where beams

(b): 10 pts θ_{b} = angle of vefraction
At what angle does each beam of light refract into the second material? $n_i(\lambda)$ sin $(\theta_i) = n_2(\lambda)$ sin (θ_b) For λ_1 : $(1 + e^{-\lambda/\lambda_0})$ sin $(\theta_1) = (2 + e^{-\lambda/\lambda_0})$ sin (θ_b) $sin(\theta_b) = (1 + e^{-\lambda_1/\lambda_0}) sin(\theta_i)$
 $2 + e^{-\lambda_1/\lambda_0}$ $\theta_b = \sin^{-1} \left(\frac{1+e^{-\lambda_0} \sin(\theta_i)}{2+e^{-\lambda_1} \lambda_0} \right)$ for λ For λ_2 : $(1 + e^{-\lambda_2/\lambda_0})$ sin $(\theta_1) = (2 + e^{-\lambda_2/\lambda_0})$ sin (θ_b) Sin $(\theta_b) = (1 + e^{-\lambda_b/\lambda_o}) \sin(\theta_i)$
 $2 + e^{-\lambda_b/\lambda_o}$ 2te $\theta_b = \sin^{-1} \left(\frac{1 + e^{-\lambda \sqrt{n}} \sin(\theta i)}{2 + e^{-\lambda \sqrt{n}}}\right)$ for λ_2

 (c) : 10 pts

Do the beams bend towards or away from the normal, or does it depend on the specific values of $\lambda_{1,2}$? if you graph n_1 vs n_2 , you see that N_2 is always larger than N_1 for all wavelengths. The values of λ_1 & λ_2 do not matter because we stay consistent on which λ we use in the Law of refraction equation ($n_1(\lambda_1)$ sin (θ_1) = $n_2(\lambda_1)$ sin θ_1) and $n_1(\lambda_2)$ sin $(\theta_i) = n_2(\lambda_2)$ sin (θ_b) . Since $n_2 > n_1$, the beams bend toward the normal; a ray going from smaller to bigger index of refraction has ^a slower wave speed when passing so θ_b with the normal is smaller in the second material than θ in the first.