You must show your work to receive credit. An answer written down with no work will receive no credit.

Problem 1

100 points

Consider two infinitely long straight wires lying in the xy-plane. Wire 1 carries current I_1 in the $+\hat{x}$ direction and wire 2 carries current I_2 in the $-\hat{y}$ direction.

(a) : 40 points

Calculate the magnetic field $\vec{B}(x,y)$ (magnitude and direction) everywhere in the xy-plane. [In terms of μ_0, I_1, I_2 , and/or coordinates.] Do not use any results derived in class, show your work starting with either on a parallel line the Biot-Savart law or Ampere's law.

for an indir wire, field is constant any distance away the wire. therefore, field strength can only $Frow$ change depending on the distance of line C moving parallel to wire -> constant mag strength)

Physics 1C: Midterm 1

You must show your work to receive credit. An answer written down with no work will receive no credit.

 (b) : 12 points \ast

→

Calculate the magnetic flux through a cube of side length L centered at the origin. [In terms of μ_0, I_1, I_2 , and/or L

$$
\frac{I_{B} \times I_{B} = S_{B} \times dA}{\frac{1}{2} \times 1}
$$
\n
$$
= S_{B} \times dA + S_{B} \times dA + \cdots + S_{C} \times dA
$$
\n
$$
= S_{C} \times dA + S_{C} \times dA + \cdots + S_{C} \times dA
$$
\n
$$
= S_{C} \times dA + S_{C} \times dA + \cdots + S_{C} \times dA
$$
\n
$$
= S_{C} \times dA + S_{C} \times dA + \cdots + S_{C} \times dA
$$
\n
$$
= S_{C} \times dA + S_{C} \times dA + \cdots + S_{C} \times dA
$$
\n
$$
= S_{C} \times dA + S_{C} \times dA + \cdots + S_{C} \times dA
$$
\n
$$
= S_{C} \times dA + S_{C} \times dA + \cdots + S_{C} \times dA
$$
\n
$$
= S_{C} \times dA + S_{C} \times dA + \cdots + S_{C} \times dA
$$
\n
$$
= S_{C} \times dA + S_{C} \times dA + \cdots + S_{C} \times dA
$$
\n
$$
= S_{C} \times dA + S_{C} \times dA + \cdots + S_{C} \times dA
$$
\n
$$
= S_{C} \times dA + S_{C} \times dA + \cdots + S_{C} \times dA
$$
\n
$$
= S_{C} \times dA + S_{C} \times dA + \cdots + S_{C} \times dA
$$
\n
$$
= S_{C} \times dA + S_{C} \times dA + \cdots + S_{C} \times dA
$$
\n
$$
= S_{C} \times dA + S_{C} \times dA + \cdots + S_{C} \times dA
$$
\n
$$
= S_{C} \times dA + S_{C} \times dA + \cdots + S_{C} \times dA
$$
\n
$$
= S_{C} \times dA + S_{C} \times dA + \cdots + S_{C} \times dA
$$
\n
$$
= S_{C} \times dA + S_{C} \times dA + \cdots + S_{C} \times dA
$$
\n
$$
= S_{C} \times dA + S_{C} \times dA +
$$

Suppose now a magnetic moment $\vec{\mu} = \mu \hat{z}$ is placed at rest at some location (x, y) .

$(c):$ – points

Calculate the torque felt by the magnetic moment. [In terms of μ_0, I_1, I_2, μ, x , and/or y] γ = π x B = $42 \times 6(x, y) = 42 \times 6(x, y)$ = $M2 \times (\frac{M_0}{2\Pi}(\frac{\beth}{\gamma}+\frac{\beth}{\alpha})\frac{\gamma}{2})$ in is parallel or contigarallel to B
so the cross product value is

nis malces sense bic the Moment w/ the field
o rotate to align already aligned 001 need 40

You must show your work to receive credit. An answer written down with no work will receive no credit.

(d) : 12 points

Calculate the potential energy of the magnetic moment in this magnetic field. [In terms of μ_0, I_1, I_2, μ, x , and/or y .

$$
u_{B} = -a\vec{i} \cdot \vec{B}
$$

\n $\vec{a} \cdot \vec{s} = a\vec{B}$
\n $\vec{a} \cdot \vec{B} = a\vec{B}$
\n $u_{B} = -a\left(\frac{u_{0}}{2\pi}\left(\frac{\vec{a}}{2}\right) + \vec{B}\right)$

moment and field are
already a ligned so
Up will be e

(e) : 12 points

Calculate the force exerted by the magnetic field on this magnetic moment. [In terms of μ_0, I_1, I_2, μ, x , and/or y .

F:
$$
-\nabla U_{B}
$$

\n $=\langle \frac{\partial U_{B}}{\partial x}, \frac{\partial U_{B}}{\partial y} \rangle$
\n $\frac{\partial U_{B}}{\partial x} = -\frac{M u_{0}}{2 \pi} \left(-\frac{T_{2}}{x^{2}} \right) \frac{\partial U_{B}}{\partial y} = -\frac{M u_{0}}{2 \pi} \left(-\frac{T_{1}}{y^{2}} \right)$
\n $= \frac{M u_{0} T_{2}}{2 \pi x^{2}} = \frac{M u_{0} T_{1}}{2 \pi y^{2}}$
\n $\vec{r} = \left[-\frac{M u_{B}}{2 \pi} \langle \frac{T_{2}}{x^{2}} \rangle, \frac{T_{1}}{y^{2}} \rangle \right]$

Problem 1 continued on next page...

You must show your work to receive credit. An answer written down with no work will receive no credit.

(f) : 12 points

Suppose a particle of charge q is placed at a position (x, y) and given velocity $\vec{v} = v\hat{x}$. What electric field could be established at (x, y) so that the net force on the charged particle at that location is zero? [In terms of μ_0, I_1, I_2, q, v, x , and/or y. Δ

1) find
$$
\sqrt{16}
$$

\n2) calculate \vec{E} and \vec{E} is equal and opposite.
\n $\vec{E}_B = q \vec{v} \times \vec{B}$
\n $= q(\vec{v} \times \vec{B}) \times (\frac{a_0}{2\pi} (\frac{z_1}{z_1} + \frac{z_2}{z_2}) \hat{E})$
\n $= -q \sqrt{\frac{a_0}{2\pi} (\frac{z_1}{z_1} + \frac{z_2}{z_2})} \hat{y}$
\n $= -q \sqrt{\frac{a_0}{2\pi} (\frac{z_1}{z_1} + \frac{z_2}{z_2})} \hat{y}$
\n $= -\frac{a_0 e \sqrt{C_0}}{2\pi} (\frac{z_1}{z_1} + \frac{z_2}{z_2})$
\n \vec{F}
\n $= \vec{C} \vec{F}$
\n $m \vec{v} \cdot \vec{b}$ direct
\n $+ \vec{v} \cdot \vec{d}$