211C-PHYSICS1C-2 Midterm 1

RICHARD JIANG

TOTAL POINTS

100 / 100

QUESTION 1

Problem 1100 pts

1.1 (a) **40 / 40**

✓ - 0 pts Correct

 - 0 pts Mistake (will clarify in specific comments and adjust points below)

1.2 (b) **12 / 12**

✓ - 0 pts Correct

 - 0 pts Mistake (will clarify in specific comments and adjust points below)

1.3 (c) **12 / 12**

✓ - 0 pts Correct

 - 0 pts Mistake (will clarify in specific comments and adjust points below)

1.4 (d) **12 / 12**

✓ - 0 pts Correct

 - 0 pts Mistake (will clarify in specific comments and adjust points below)

1.5 (e) **12 / 12**

✓ - 0 pts Correct

 - 0 pts Mistake (will clarify in specific comments and adjust points below)

1.6 (f) **12 / 12**

✓ - 0 pts Correct

Problem 1

100 points

Consider two infinitely long straight wires lying in the xy-plane. Wire 1 carries current I_1 in the $+\hat{x}$ direction and wire 2 carries current I_2 in the $-\hat{y}$ direction.

(a) : 40 points

Calculate the magnetic field $\vec{B}(x,y)$ (magnitude and direction) everywhere in the xy-plane. [In terms of μ_0, I_1, I_2 , and/or coordinates.] Do not use any results derived in class, show your work starting with either the Biot-Savart law or Ampere's law.

0 Part P: (x,y) Over b I, :
$$
d\vec{B} = \frac{d\vec{a}}{t\vec{a}} \frac{I_1 d\vec{l} \times \hat{r}}{r^2}
$$
 $d\vec{l} = dx \hat{x}$
\n $\vec{B} = \frac{\mu}{4\vec{a}} I_1 \int \frac{dx \hat{x} x \hat{r}}{x^2 + y^2}$
\n $|\hat{x} \times \hat{r}| = 1 \sin \phi$
\n $\hat{x} \times \hat{r} = \sin \phi \cdot \hat{z} = \frac{y}{r} \hat{z} = \frac{y}{l\vec{a} \cdot \vec{a}}$
\n $\Rightarrow \vec{B} \text{ due to } I_1 = \frac{\mu_0 I_1}{4\vec{a}} I_2 \int \frac{d\vec{x}}{u} \frac{dx}{(x^2 + y^2)^2} = -\frac{\mu_0 I_1}{4\pi} \cdot \frac{2a}{y^2 l\vec{x} + a^2} \hat{z}$
\n $\approx a \Rightarrow \infty : \vec{B} = \frac{\mu_0 I_1}{2\pi y^2}$

Problem 1 continued on next page...

At
$$
\vec{P}
$$
, B due to I_1 : $\frac{M_0 I_1}{2\pi y} \hat{z}$
B due to I_2 : $\frac{M_0 I_2}{2\pi x} \hat{z}$ (dir from RHR, mag. from above)

 $\boldsymbol{\hat{z}}$

 $2\pi x$

Page 2

224

You must show your work to receive credit. An answer written down with no work will receive no credit.

0
$$
\vec{g}^{T} = \left(\frac{M_{0}I_{1}}{2\pi y} + \frac{M_{0}I_{2}}{2\pi x}\right) \hat{\tau}
$$

\nUsing result from (1)
\n0. 8 d_{xx} in I_{1} : $\frac{M_{0}I_{1}}{2\pi y} \hat{\tau}$ (div from RUR)
\n5 d_{xx} in I_{1} : $\frac{M_{0}I_{2}}{2\pi y} \hat{\tau}$ (div from RUR)
\n $\vec{g}^{T}_{int} = \left(\frac{M_{0}I_{1}}{2\pi y} - \frac{M_{0}I_{2}}{2\pi x}\right) \hat{\tau}$
\n(3) $\vec{g}^{T}_{int} = \left(\frac{M_{0}I_{1}}{2\pi y} + \frac{M_{0}I_{2}}{2\pi y}\right) \hat{\tau}$
\n(4) d_{xx} in I_{1} : $-\frac{M_{0}I_{1}}{2\pi y} \hat{\tau}$ (div (6m - EUR)
\n $\vec{g}^{T}_{int} = -\left(\frac{M_{0}I_{1}}{2\pi y} + \frac{M_{0}I_{2}}{2\pi x}\right) \hat{\tau}$
\n(4) $\vec{g}^{T}_{int} = -\left(\frac{M_{0}I_{1}}{2\pi y} + \frac{M_{0}I_{2}}{2\pi x}\right) \hat{\tau}$
\n(5 d_{xx} in I_{1} : $-\frac{M_{0}I_{2}}{2\pi x} \hat{\tau}$
\n(6 d_{xx} in I_{1} : $-\frac{M_{0}I_{2}}{2\pi x} \hat{\tau}$
\n(7 $\frac{M_{0}I_{1}}{2\pi x} \hat{\tau}$ (8 $\frac{I_{1}}{2\pi y} \hat{\tau}$) $\hat{\tau}$
\n(9 Δt out Δt in Δt (1 $\frac{M_{0}I_{2}}{2\pi x} \hat{\tau}$ (1 $\frac{M_{0}I_{1}}{2\pi y} \hat{\tau}$) $\hat{\tau}$
\n(1 $\frac{M_{0}I_{$

 $2\pi x$

1.1 (a) **40 / 40**

✓ - 0 pts Correct

(b) : 12 points

Calculate the magnetic flux through a cube of side length L centered at the origin. [In terms of μ_0, I_1, I_2 , and/or L

Suppose now a magnetic moment $\vec{\mu} = \mu \hat{z}$ is placed at rest at some location (x, y) .

 (c) : – points

Calculate the torque felt by the magnetic moment. [In terms of μ_0, I_1, I_2, μ, x , and/or y]

$$
\vec{t} = \vec{\mu} \times \vec{B}
$$
\n
$$
= \vec{\mu} \cdot \hat{z} \times (\frac{\mu_0 I_1}{2 \pi y} + \frac{\mu_0 I_2}{2 \pi x}) \hat{z}
$$
\n
$$
= 0.
$$
\n
$$
\hat{z} \times \hat{z} = 0 \text{ as } \text{Rg} \text{ are parallel.}
$$

Problem 1 continued on next page...

1.2 (b) **12 / 12**

✓ - 0 pts Correct

(b) : 12 points

Calculate the magnetic flux through a cube of side length L centered at the origin. [In terms of μ_0, I_1, I_2 , and/or L

Suppose now a magnetic moment $\vec{\mu} = \mu \hat{z}$ is placed at rest at some location (x, y) .

 (c) : – points

Calculate the torque felt by the magnetic moment. [In terms of μ_0, I_1, I_2, μ, x , and/or y]

$$
\vec{t} = \vec{\mu} \times \vec{B}
$$
\n
$$
= \vec{\mu} \cdot \hat{z} \times (\frac{\mu_0 I_1}{2 \pi y} + \frac{\mu_0 I_2}{2 \pi x}) \hat{z}
$$
\n
$$
= 0.
$$
\n
$$
\hat{z} \times \hat{z} = 0 \text{ as } \text{Rg} \text{ are parallel.}
$$

Problem 1 continued on next page...

1.3 (c) **12 / 12**

✓ - 0 pts Correct

(d) : 12 points

Calculate the potential energy of the magnetic moment in this magnetic field. [In terms of μ_0 , I_1 , I_2 , μ , x , and/or y .

$$
U_{0} = -\overrightarrow{\mu} \cdot \overrightarrow{\beta}
$$

\n
$$
= -(\mu \hat{\alpha} \cdot (\frac{\mu_{0}I_{1}}{2\pi y} + \frac{\mu_{0}I_{2}}{2\pi x})\hat{\alpha}) \qquad (cos 0 = 1)
$$

\n
$$
= -\frac{\mu_{1}\mu_{0}}{2\pi}(\frac{I_{1}}{y} + \frac{I_{2}}{x})
$$

(e) : 12 points

Calculate the force exerted by the magnetic field on this magnetic moment. [In terms of μ_0, I_1, I_2, μ, x , and/or y .

$$
F^{2} = -\nabla U_{B} = \nabla (\vec{M} \cdot \vec{B})
$$
\n
$$
\frac{\partial}{\partial x} (\vec{\mu} \cdot \vec{B}) = \frac{M_{0}M_{1}}{2\pi} \frac{1}{2\pi}
$$
\n
$$
\frac{\partial}{\partial y} (\vec{M} \cdot \vec{B}) = \frac{M_{0}M_{1}}{2\pi} \frac{1}{2\pi}
$$
\n
$$
\frac{\partial}{\partial t} = \left\langle -\frac{M_{00}}{2\pi} \frac{I_{1}}{x^{2}} - \frac{M_{00}}{2\pi} \frac{I_{1}}{y^{2}} \right\rangle
$$

Problem 1 continued on next page...

1.4 (d) **12 / 12**

✓ - 0 pts Correct

(d) : 12 points

Calculate the potential energy of the magnetic moment in this magnetic field. [In terms of μ_0 , I_1 , I_2 , μ , x , and/or y .

$$
U_{0} = -\overrightarrow{\mu} \cdot \overrightarrow{\beta}
$$

\n
$$
= -(\mu \hat{\alpha} \cdot (\frac{\mu_{0}I_{1}}{2\pi y} + \frac{\mu_{0}I_{2}}{2\pi x})\hat{\alpha}) \qquad (cos 0 = 1)
$$

\n
$$
= -\frac{\mu_{1}\mu_{0}}{2\pi}(\frac{I_{1}}{y} + \frac{I_{2}}{x})
$$

(e) : 12 points

Calculate the force exerted by the magnetic field on this magnetic moment. [In terms of μ_0, I_1, I_2, μ, x , and/or y .

$$
F^{2} = -\nabla U_{B} = \nabla (\vec{M} \cdot \vec{B})
$$
\n
$$
\frac{\partial}{\partial x} (\vec{\mu} \cdot \vec{B}) = \frac{M_{0}M_{1}}{2\pi} \frac{1}{2\pi}
$$
\n
$$
\frac{\partial}{\partial y} (\vec{M} \cdot \vec{B}) = \frac{M_{0}M_{1}}{2\pi} \frac{1}{2\pi}
$$
\n
$$
\frac{\partial}{\partial t} = \left\langle -\frac{M_{00}}{2\pi} \frac{I_{1}}{x^{2}} - \frac{M_{00}}{2\pi} \frac{I_{1}}{y^{2}} \right\rangle
$$

Problem 1 continued on next page...

1.5 (e) **12 / 12**

✓ - 0 pts Correct

(f) : 12 points

Suppose a particle of charge q is placed at a position (x, y) and given velocity $\vec{v} = v\hat{x}$. What electric field could be established at (x, y) so that the net force on the charged particle at that location is zero? [In terms of μ_0, I_1, I_2, q, v, x , and/or y].

$$
f = q\vec{v} \times \vec{B}
$$

\n
$$
= q(\vec{v} \times (\frac{M_{0}I_{1}}{2\pi y} + \frac{M_{0}I_{2}}{2\pi x})\hat{z})
$$

\n
$$
= q\vec{v}(\frac{M_{0}I_{1}}{2\pi y} + \frac{M_{0}I_{2}}{2\pi x})\hat{z}
$$

\n
$$
F_{\epsilon} = F_{\epsilon} q \text{ is the true (20)}
$$

\n
$$
F_{\epsilon} = F_{\epsilon} q \text{ is the true (20)}
$$

$$
f_{\epsilon} = q \epsilon
$$
\n
$$
\epsilon = \sqrt{\frac{M_{0}I_{1}}{2\pi_{y}}} = \frac{M_{0}I_{2}}{2\pi_{x}}
$$

1.6 (f) **12 / 12**

✓ - 0 pts Correct