You must show your work to receive credit. An answer written down with no work will receive no credit.

Problem 1

70 points

Consider a volume of current that extends infinitely in the x- and z-directions, and has a thickness of d in the y-direction (henceforth referred to as "the volume"). The current density in the volume is given by

$$\vec{J} = 2J_0 \frac{|y|}{d} \hat{z},$$

where $J_0 > 0$ is a constant with units of current per unit area.

(a): 10 points

Find the direction of the magnetic field in the following regions of space:

1.
$$y < -d/2$$

2.
$$-d/2 < y < 0$$

3.
$$0 < y < d/2$$

4.
$$y > d/2$$

of right had role

Write your answer in terms of the Cartesian unit vectors \hat{x} , \hat{y} , and/or \hat{z} .

2.
$$-\frac{1}{2}$$
 cyco $-\hat{\chi}$ direction
3. $0 < y < \frac{1}{2}$ $-\hat{\chi}$ direction
4. $cy < \frac{1}{2}$ $-\hat{\chi}$ direction

You must show your work to receive credit. An answer written down with no work will receive no credit.

(b): 10 points

Outside of the volume, in which directions could you throw a charged particle if you didn't want it to feel any force from the magnetic field?

Because the force on a charged particle is == qv x3. You should throw the particle in the ± & directions Because B is m the & direction when you - zoure, and is in the -2 drection were y > = throwing the particle in the tx directions will couse \$ x 3 to evaluate to 0, so the portice will feel 0 magnetic

(c): 5 points

Are there any locations where the magnetic field vanishes? If so, where?

The magnetic field vanishes at y=0 because of symmetry around H. At y=0, the magnetic field produced by the current above y=0 cancels with the magnetic field probable by the wrient below, You must show your work to receive credit. An answer written down with no work will receive no credit.

(d): 25 points

Use Ampere's law to calculate the magnetic field magnitude everywhere in space (inside and outside the volume). [In terms of d, J_0 , μ_0 , and/or any spatial coordinates]. You may find your results from parts (a) and (c) useful

3.
$$\sqrt{y} = \frac{1}{2}$$

\$\frac{1}{9}\frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2} \frac{1}{2}

You must show your work to receive credit. An answer written down with no work will receive no credit.

(e): 20 points (5 points each)

Consider a point magnetic dipole $\vec{\mu} = |\vec{\mu}|\hat{y}$.

- 1. If the dipole is placed outside the volume, will it feel a torque? Explain.
- 2. If the dipole is placed outside the volume, will it feel a net force? Explain.
- 3. If the dipole is placed *inside* the volume (but not at y = 0), will it feel a torque? Explain.
- 4. If the dipole is placed *inside* the volume (but not at y = 0), will it feel a net force? Explain.

Udure, the mognetic field is uniform, so the magnetic toque can be fand through $T = \overline{X} \times \overline{B}$ Because \overline{X} is in the \overline{Y} direction, and \overline{B} is in the \overline{Y} Linection, there will be torque. \overline{B} , the same

18 three Mside the volume, but because the magnetic

field is not uniform, $T = \overline{X} \times \overline{B}$ is only an approximation.

The dipole will not feel a net force. Since UB = - 13.13 and is in the is direction, the dot product will be 0.

T4.) The Impole will not feel a net force because

the magnetic fiel and the point magnetic dispute

and me perpedicular directions, so the

det problet up = -2.3 evaluates to 0.

You must show your work to receive credit. An answer written down with no work will receive no credit.

Problem 2

30 points

Consider a segment of wire of length d carrying current I along the $+\hat{x}$ direction. In this problem, you may find the integrals found on this page useful: Hyperphysics table of integrals

(a): 10 points

Use the Biot-Savart law to calculate the magnetic field at point
$$Q$$
 (a distance x along the positive x axis).

$$\frac{\partial \vec{\beta}}{\partial x} = \frac{\partial \vec{\alpha}}{\partial x} = \frac{\partial \vec{\beta}}{\partial x} = \frac{\partial \vec{$$

You must show your work to receive credit. An answer written down with no work will receive no credit.

(b): 20 points

Use the Biot-Savart law to calculate the magnetic field at point P (a distance y along the positive y axis).

$$B = \frac{u_0}{4\pi} \int_{-d}^{2} \frac{dx}{x^2 + y^2} \times r = \sqrt{x^2 + y^2}$$

$$B = \frac{u_0}{4\pi} \int_{-d}^{0} \frac{dx}{x^2 + y^2} \times r = \sqrt{x^2 + y^2}$$

$$B = \frac{u_0}{4\pi} \int_{-d}^{0} \frac{dx}{(x^2 + y^2)^{\frac{3}{2}}} \stackrel{\triangle}{=} \frac{u_0}{(x^2 + y^2)$$

