Problem 1

70 points

Consider a volume of current that extends infinitely in the *x*- and *z*-directions, and has a thickness of *d* in the *y*-direction (henceforth referred to as "the volume"). The current density in the volume is given by

$$
\vec{J} = 2J_0 \frac{|y|}{d} \hat{z},
$$

where $J_0 > 0$ is a constant with units of current per unit area.

(a) : 10 points

Find the direction of the magnetic field in the following regions of space:

1. $y < -d/2$ $\hat{\chi}$ 2. $-d/2 < y < 0$ $\hat{\chi}$ 3. $0 < y < d/2$ - $\hat{\mathcal{R}}$ 4. $y > d/2$ $-\frac{1}{x}$

Write your answer in terms of the Cartesian unit vectors \hat{x} , \hat{y} , and/or \hat{z} .
1. Using vight hand nule, $\overrightarrow{\beta}$ in \hat{x} sums up. Other components counce1 2. same reason as U) 2. survice reason as ∞ , β in - $\hat{\chi}$ sums up. Other components canier 4. same reason as (3)

(b): 10 points

Outside of the volume, in which directions could you throw a charged particle if you didn't want it to feel

any force from the magnetic field?
You could throw the chavage particle in either $\hat{\chi}$ or $-\hat{\chi}$ direction. $F = g \overrightarrow{V} \times \overrightarrow{B}$. It \overrightarrow{V} and \overrightarrow{B} and parallel to each other, $\vec{v} \times \vec{B}$ is 0. Therefore, the force it experiences is 0.

 $(c): 5 points$

Are there any locations where the magnetic field vanishes? If so, where?

(d): 25 points

Use Ampere's law to calculate the magnetic field magnitude everywhere in space (inside and outside the volume). [In terms of d , J_0 , μ_0 , and/or any spatial coordinates]. You may find your results from parts (a) and (c) useful.

$$
\oint \vec{E} \cdot d\vec{l} = \text{MoI}^{av}
$$
\n
$$
\beta \cdot Y = \text{Mo} \cdot (\int_{0}^{y} Jdy \cdot Y) = \frac{Y}{\sqrt{\frac{1}{y}}y}
$$
\n
$$
\beta = \text{Mo} \int_{0}^{y} Jdy
$$
\n
$$
= \text{Mo} \int_{0}^{y} 2J\sigma \frac{14J}{d} dy
$$
\n
$$
= \frac{2M\sigma J\sigma}{d} \frac{y^{2}}{2} \Big|_{0}^{y}
$$
\n
$$
= \frac{M\sigma J\sigma y^{2}}{d}
$$

$$
y \leq -dy_{2}: \vec{B} = \frac{y_{b}J_{0}(\frac{d}{2})^{2}}{d} = \frac{y_{b}J_{0}d}{4} \hat{x}, \vec{B} = \frac{y_{b}J_{0}d^{2}}{4} \hat{y}, \vec{C} = \frac{y_{b}J_{0}d^{2}}{d} \hat{y}
$$
\n
$$
-dy_{2} < y < 0: \vec{B} = \frac{y_{b}J_{0}y^{2}}{d} \hat{x}, \vec{C} = \frac{y_{b}J_{0}y^{2}}{d} \hat{y}
$$
\n
$$
y = 0: \vec{B} = 0, \vec{C} = \frac{-y_{b}J_{0}y^{2}}{d} \hat{x}, \vec{D} = \frac{y_{b}J_{0}y^{2}}{d} \hat{y}
$$
\n
$$
y \geq \frac{d}{2}: \vec{B} = \frac{-y_{b}J_{0}d}{4} \hat{x}, \vec{D} = \frac{y_{b}J_{0}d}{4} \hat{y}
$$

(e): 20 points (5 points each)

Consider a point magnetic dipole $\vec{\mu} = |\vec{\mu}|\hat{y}$.

- 1. If the dipole is placed *outside* the volume, will it feel a torque? Explain.
- 2. If the dipole is placed *outside* the volume, will it feel a net force? Explain.
- 3. If the dipole is placed *inside* the volume (but not at $y = 0$), will it feel a torque? Explain.
- 4. If the dipole is placed *inside* the volume (but not at *y* = 0), will it feel a net force? Explain.
- 1. Yes. $\vec{\tau}$ = $\vec{\eta} \times \vec{B}$. Since $\vec{\eta}$ (with direction \hat{g}) and \vec{B} (with direction $\hat{\chi}$ or $-\hat{\chi}$) are perpendicular, their cross product exists, exerning a non-zero torque on the dipole.
- 2. No. Since \overrightarrow{B} outside of the volume is relatively constant, the dipole will experience equal and opposite forces on its two ends, Huvebore, it will not experience a net force.
- $3.$ Yes. $\vec{\tau}$ = $\vec{\eta} \times \vec{B}$. Since $\vec{\eta}$ curitor direction \hat{g}) and \vec{B} (with direction $\hat{\chi}$ or $-\hat{\chi}$) are perpendicular, their cross product exists, exerning a non-zero torque on the dipole.
- 4. Yes, Since \overrightarrow{B} inside the volume varies in g-direction, Yes, Since \overline{B} inside the volume varies in the forces when its the dipole will not experience equal the right of tone
In g-direction. Therefore, it will experience a net force

Problem 2

30 points

Consider a segment of wire of length *d* carrying current *I* along the $+\hat{x}$ direction. In this problem, you may find the integrals found on this page useful:

[Hyperphysics table of integrals](http://hydrogen.physik.uni-wuppertal.de/hyperphysics/hyperphysics/hbase/math/intalg.html)

(a): 10 points

Use the Biot-Savart law to calculate the magnetic field at point *Q* (a distance *x* along the positive *x* axis).

$$
d\vec{B} = \frac{\mu_0}{4\pi} \frac{\text{Id}l \times \hat{r}}{r^2}
$$
\n
$$
\vec{B} = \frac{\mu_0}{4\pi} \int_0^d \frac{\text{Id}l \times \hat{r}}{(l+\hat{r})^2}
$$
\n
$$
\vec{L} \times \hat{r} = 0 \text{ since they are parallel}
$$
\n
$$
\vec{B} \text{ at } \hat{R} = 0
$$

Problem 2 continued on next page... Page 5

(b): 20 points

Use the Biot-Savart law to calculate the magnetic field at point *P* (a distance *y* along the positive *y* axis).

$$
d\vec{B} = \frac{\mu_o}{4\pi} \frac{Id\vec{l} \times \hat{r}}{l^2 + \gamma^2}
$$
\n
$$
d\vec{B} = \frac{\mu_o}{4\pi} \frac{I \sin\theta \, dl}{l^2 + \gamma^2} \hat{z} = \frac{\mu_o}{4\pi} \frac{I}{l^2 + \gamma^2} \frac{4}{\sqrt{l^2 + \gamma^2}} d\ell \hat{z}
$$
\n
$$
\vec{B} = \frac{\mu_o I \gamma}{4\pi} \int_o^d \frac{1}{(l^2 + \gamma^2)^3} d\ell \hat{z} = \frac{\mu_o I \gamma}{4\pi} \frac{d}{d\sqrt{d^2 + \gamma^2}} \hat{z} = \frac{\mu_o I d}{4\pi \sqrt{d^2 + \gamma^2}} \hat{z}
$$