midterm1

Saturday, August 14, 2021 1:49 AM

You must show your work to receive credit. An answer written down with no work will receive no credit.

Problem 1

100 points

Consider two infinitely long straight wires lying in the xy-plane. Wire 1 carries current I_1 in the $+\hat{x}$ direction and wire 2 carries current I_2 in the $-\hat{y}$ direction.

(a) : 40 points

Calculate the magnetic field $\vec{B}(x, y)$ (magnitude and direction) everywhere in the xy-plane. [In terms of μ_0, I_1, I_2 , and/or coordinates.] **Do not** use any results derived in class, show your work starting with either For $P(x,y)$, if we chose the integertion point viewed the Biot-Savart law or Ampere's law.

By Biot-Savart Aaw,
\n
$$
\overrightarrow{B} = \frac{M_0}{4\pi} \int \frac{1d\overrightarrow{L}x \overrightarrow{F}}{F^2}
$$

\nFor wire 2, we pick a point P that
\n $\overrightarrow{B_1} = \frac{M_0I_2}{\pi X} \cdot \overrightarrow{F}$
\n $\overrightarrow{F} = \frac{M_0I_2}{\pi X} \cdot \overrightarrow{F}$
\nFrom the figure, $r = \sqrt{x^2+y^2}$
\n $\overrightarrow{B_1} = \frac{M_0I_2}{\pi X} \cdot \overrightarrow{F}$
\n $\overrightarrow{B_2} = \frac{M_0I_1}{\pi X} \cdot \overrightarrow{F}$
\n $\overrightarrow{B_3} = \frac{M_0I_2}{\pi X} \cdot \overrightarrow{F}$
\n $\overrightarrow{B_1} = \frac{M_0I_1}{\pi X} \cdot \overrightarrow{F}$
\n $\overrightarrow{B_2} = \frac{M_0I_1}{\pi X} \cdot \overrightarrow{F}$
\n $\overrightarrow{B_1} = \frac{M_0I_1}{\pi X} \cdot \overrightarrow{F}$
\n $\overrightarrow{B_2} = \frac{M_0I_1}{\pi X} \cdot \overrightarrow{F}$
\n $\overrightarrow{B_1} = \frac{M_0I_1}{\pi X} \cdot \overrightarrow{F}$
\n $\overrightarrow{B_2} = \frac{M_0I_1}{\pi X} \cdot \overrightarrow{F}$
\n $\overrightarrow{B_1} = \frac{M_0I_1}{\pi X} \cdot \overrightarrow{F} = 0, \forall \pm 0$
\n $\overrightarrow{B_2} = \frac{M_0I_1}{\pi X} \cdot \overrightarrow{F} = 0, \forall \pm 0$
\nBy symmetry, $\theta_2 = \frac{M_0I_2}{\pi X}$, $\overrightarrow{B_2} = \frac{M_0I_1}{\pi X} \cdot \overrightarrow{B_1} = \frac{M_0I_2}{\pi X} \cdot \overrightarrow{B_2} = 0$
\nSimilarly, $\theta_1 = \frac{M_0I_1}{\pi X}$, $\theta_1 = \frac{M_0I_1}{\pi X}$, $\theta_1 = \frac{$

Problem 1 continued on next page...

Page 1

 $\mbox{\bf\emph{R}ombes}$

You must show your work to receive credit. An answer written down with no work will receive no $_{\rm credit.}$

Problem 1 continued on next page... $\,$

Page $2\,$

Rombes

You must show your work to receive credit. An answer written down with no work will receive no credit.

(b) : 12 points

Calculate the magnetic flux through a cube of side length L centered at the origin. [In terms of μ_0, I_1, I_2 ,

If we choose the point 10.0) shown
in figure as the origin
By definition. $\phi_{\tilde{b}}$ = S Bus pdA = S is dA
By Gauss daw of Magnetism, $\tilde{\phi}$ is dA = 0 for doued surface T_1 \mathcal{L}_1 L (0.0) \therefore Φ_B for cube = 0

Suppose now a magnetic moment $\vec{\mu} = \mu \hat{z}$ is placed at rest at some location (x, y) .

(c) : – points

Calculate the torque felt by the magnetic moment. [In terms of μ_0, I_1, I_2, μ, x , and/or y]

 $\overrightarrow{B}(x,y) = \frac{2}{2} \left(\frac{M_0 I_1}{2 \pi y} + \frac{M_0 I_1}{2 \pi x} \right)$ $\vec{\mu} = \mu \hat{i}$ $\vec{z} = \vec{M} \times \vec{B}$
= $M \hat{t} \times \hat{t} (\frac{M \cdot 1}{2} \vec{A} y + \frac{M \cdot 1}{2} \vec{A} x)$ $\boldsymbol{\mathcal{D}}$ \leq

Problem 1 continued on next page...

Page 3

You must show your work to receive credit. An answer written down with no work will receive no $_{\rm credit.}$

(d) : 12 points

Calculate the potential energy of the magnetic moment in this magnetic field. [In terms of μ_0, I_1, I_2, μ, x , and/or y .

$$
\begin{array}{lll}\nT_{1}^{2} \times 10 \text{ y to } U_{B} = -\mu \hat{E} \\
&= -\mu \hat{E} \cdot \hat{E} \left(\frac{\mu_{0}I_{1}}{\mu_{0}Y} + \frac{\mu_{0}I_{2}}{\mu_{0}X} \right) \\
&= -\mu \left(\frac{\mu_{0}I_{1}}{\mu_{0}Y} + \frac{\mu_{0}I_{2}}{\mu_{0}X} \right) \\
&= -\mu \left(\frac{\mu_{0}I_{1}}{\mu_{0}Y} + \frac{\mu_{0}I_{2}}{\mu_{0}X} \right) \\
&= -\mu \mu_{0} \left(\frac{I_{1}}{Y} + \frac{I_{2}}{X} \right) \\
&= -\mu \mu_{0} \left(\frac{I_{1}}{Y} + \frac{I_{2}}{X} \right) \\
&= -\mu \left(\frac{\mu_{0}I_{1}}{Y} \right) \\
&= -\mu \left(\frac{\mu_{0}I
$$

Calculate the force exerted by the magnetic field on this magnetic moment. [In terms of μ_0, I_1, I_2, μ, x , and/or y .

$$
If x=0, y=0\nU_{B}=-\frac{1}{2}(\frac{1}{3}+\frac{1}{x})\nF=-\frac{1}{2}(\frac{1}{2}+\frac{1}{x})\n+ \frac{3}{2}(\frac{1}{2}(\frac{1}{2}+\frac{1}{x}))\hat{y}\n+ \frac{3}{2}(\frac{1}{2}(\frac{1}{2}+\frac{1}{x}))\hat{y}\n=-\frac{1}{2}(\frac{1}{2}+\frac{1}{x})\hat{y}\n= -\frac{1}{2}(\frac{1}{2}+\frac{1}{x})\hat{y}\nIf x=0, y=0\nU_{B}=-\frac{1}{2}(\frac{1}{2}+\frac{1}{2}+\frac{1}{2})\nF=-\frac{1}{2}(\frac{1}{2}+\frac{1}{2}+\frac{1}{2})\nF=-\frac{1}{2}(\frac{1}{2}+\frac{1}{2}+\frac{1}{2})\nF=-\frac{1}{2}(\frac{1}{2}+\frac{1}{2}+\frac{1}{2})\nF=-\frac{1}{2}(\frac{1}{2}+\frac{1}{2}+\frac{1}{2})\nF=-\frac{1}{2}(\frac{1}{2}+\frac{1}{2}+\frac{1}{2})\nF=-\frac{1}{2}(\frac{1}{2}+\frac{1}{2}+\frac{1}{2})\nF=-\frac{1}{2}(\frac{1}{2}+\frac{1}{2}+\frac{1}{2})\nF=-\frac{1}{2}(\frac{1}{2}+\frac{1}{2}+\frac{1}{2})\nF=-\frac{1}{2}(\frac{1}{2}+\frac{1}{2}+\frac{1}{2})\nF=-\frac{1}{2}(\frac{1}{2}+\frac{1}{2}+\frac{1}{2})\nF=-\frac{1}{2}(\frac{1}{2}+\frac{1}{2}+\frac{1}{2})\nF=-\frac{1}{2}(\frac{1}{2}+\frac{1}{2}+\frac{1}{2})\nF=-\frac{1}{2}(\frac{1}{2}+\frac{1}{2}+\frac{1}{2})\nF=-\frac{1}{2}(\frac{1}{2}+\frac{1}{2}+\frac{1}{2})\nF=-\frac{1}{2}(\frac{1}{2}+\frac{1}{2}+\frac{1}{2})
$$

Problem 1 continued on next page... $\,$

Page 4

You must show your work to receive credit. An answer written down with no work will receive no $_{\rm credit.}$

(f) : 12 points

Suppose a particle of charge q is placed at a position (x, y) and given velocity $\vec{v} = v\hat{x}$. What electric field could be established at (x, y) so that the net force on the charged particle at that location is zero? [In terms of μ_0, I_1, I_2, q, v, x , and/or y].

$$
4f \times f^{*2} \times 4f^{*3} = q \sqrt{x} \frac{1}{B}
$$
\n
$$
= q(\sqrt{x}) \times \frac{1}{2} \frac{1}{2\pi} \left(\frac{1}{\gamma} + \frac{1}{\pi} \right)
$$
\n
$$
= \frac{q \sqrt{x} \sqrt{x}}{\sqrt{x}} \left(\frac{1}{\gamma} + \frac{1}{\pi} \right) (-\hat{y})
$$
\n
$$
\frac{1}{\gamma} \int_{0}^{1} \frac{1}{\gamma} \left(\frac{1}{\gamma} + \frac{1}{\pi} \right) (-\hat{y})
$$
\n
$$
\frac{1}{\gamma} \int_{0}^{1} \frac{1}{\gamma} \left(\frac{1}{\gamma} + \frac{1}{\pi} \right) (x)
$$
\n
$$
\frac{1}{\gamma} \int_{0}^{1} \frac{1}{\gamma} \left(\frac{1}{\gamma} + \frac{1}{\pi} \right) (x)
$$
\n
$$
\frac{1}{\gamma} \int_{0}^{1} \frac{1}{\gamma} \left(\frac{1}{\gamma} + \frac{1}{\pi} \right) (x)
$$
\n
$$
\frac{1}{\gamma} \int_{0}^{1} \frac{1}{\gamma} \left(\frac{1}{\gamma} \right) (x)
$$
\n
$$
\frac{1}{\gamma} \int_{0}^{1} \frac{1}{\gamma} \left(\frac{1}{\gamma} \right) (x)
$$
\n
$$
\frac{1}{\gamma} \int_{0}^{1} \frac{1}{\gamma} \left(\frac{1}{\gamma} \right) (x)
$$
\n
$$
\frac{1}{\gamma} \int_{0}^{1} \frac{1}{\gamma} \left(\frac{1}{\gamma} \right) (x)
$$
\n
$$
\frac{1}{\gamma} \int_{0}^{1} \frac{1}{\gamma} \left(\frac{1}{\gamma} \right) (x)
$$
\n
$$
\frac{1}{\gamma} \int_{0}^{1} \frac{1}{\gamma} \left(\frac{1}{\gamma} \right) (x)
$$
\n
$$
\frac{1}{\gamma} \int_{0}^{1} \frac{1}{\gamma} \left(\frac{1}{\gamma} \right) (x)
$$
\n
$$
\frac{1}{\gamma} \int_{0}^{1} \frac{1}{\gamma} \left(\frac
$$

Page $5\,$