20 points

$($ equation $#$ in textoook)

Consider a thin film of thickness $t = 2.30 \times 10^{-6}$ m and index of refraction $n_b = 1.20$. The film is resting on a material of index of refraction $n_c = 1.13$, and its top face is exposed to air $n_a = 1.00$. What is the shortest wavelength of *visible* light that will interfere destructively when incident on the film at angle $\theta_a = 22.0^{\circ}$ from the normal? Give your answer in nanometers, to three significant figures. [Note: you may ignore the fact that the wavelength will change upon refraction; this will only very slightly affect the answer.

Wave 1:

-shifts by a half cycle because nu> via

 $wave$ 2:

- does not snift because ne < nb

so for destructive interference,

 $2x = m \lambda$ (m = 0,1,2,...) (35.186)

lignore that A changes upon refraction

This page intentionally left blank

 $2t$ = m λ $\cos\theta_{b}$ $\lambda = 2t$ $m(0S\theta_b)$ Snell's Law: nasino_a = n.sino_b (33.4) $\sigma_b = \sin^{-1}\left(\frac{n_a \sin \theta_a}{n_b}\right)$ = sin^{-1} $\left(\frac{1.00}{1.20}\right)$ $= 18.19018°$ $\lambda = \frac{2(2300)}{m \cos(18.19018)}$ = 4841.975 (m=1,2,3,...)

smallest wavelength of visible light is 380 nm

if m = 13,
\n
$$
\lambda = 372 \text{ nm} \text{ (not visible)}
$$
\nif m = 12,
\n
$$
\lambda = 403 \text{ nm}
$$

20 points

$($ equation $#$ in $+$ ex $+$ book $)$

Consider the thin lens (Lens 1) of focal length $f_1 = -2.00$ cm shown below. An object is placed a distance $d_o = 4.50$ cm to the left of the lens. A second lens (Lens 2, drawn as a single vertical line in the diagram) is then placed $D = 5.00$ cm to the right of Lens 1. What is the focal length Lens 2 must have such that the *final* image of the object seen through the two lenses is inverted and enlarged by a factor of three with respect to the object? Give your answer in centimeters, to three significant figures. Is Lens 2 a converging or diverging lens?

 $\boldsymbol{\mathsf{\alpha}}$

This page intentionally left blank

1
\n1.384L1+500 +
$$
\frac{1}{s_2}
$$
 = $\frac{1}{f_2}$
\n $\frac{1}{6.384L1} + \frac{1}{s_2}$ = $\frac{1}{f_2}$
\n $m_1 = m_1 m_2$
\n $m_2 = \frac{m_1}{m_1}$
\n $m_2 = \frac{m_1}{m_1}$
\n $= \frac{-3}{0.30169}$
\n $= -9.75$
\n $m_2 = -5\frac{1}{2}$
\n $s_2 = -m_2 S_2$
\n $= -(-9.75)(6.38461)$
\n $= 62.25$
\n $f_2 = \frac{1}{6.38461} + \frac{1}{62.25}$
\n $= \frac{1}{5.79 \text{ cm}}$
\ndiverging tenter have negative focal lengths, and f₂ is positive, so lens 2 must be a
\nconverging lens

20 points

 $\text{(equation } + \text{ in } \text{textbook)}$

Consider an infinitely long cylindrical wire of radius *R* centered on the *z* axis. The current density in the wire varies with the distance ρ from the axis as $\vec{J}(\rho) = J_0 \left(1 - \frac{\rho}{R}\right) \hat{z}$, where J_0 is a constant.

(a) : 10 points

Find the magnetic field everywhere in space. Recall that current through a surface S is defined as $I =$ $\int_S \vec{J} \cdot d\vec{A}.$

 $\hat{\mathbf{\mathcal{S}}}, \hat{\mathbf{\mathcal{B}}} \cdot d\hat{\mathbf{l}} = \mathcal{M} \circ \mathbf{\mathcal{I}}$ enci (29.19) $B\oint_S d\vec{l} = \mu_0 I$ encl by Right Hand Rule,
B is in the $+\hat{x}$ direction B2TP = Mo Iencl B = <u>Mo Ienc</u>l $2\pi\rho$

if
$$
p < R
$$
,
\n
$$
I = \int_0^P J_o(1-\frac{\rho}{R}) 2\pi P dP
$$
\n
$$
= 2\pi J_o \int_0^P P - \frac{\rho^2}{R} dP
$$
\n
$$
= 2\pi J_o (\frac{\rho^2}{2} - \frac{\rho^3}{3R})
$$
\n
$$
= 2\pi J_o (\frac{\rho^2}{2} - \frac{\rho^3}{3R})
$$
\n
$$
= 2\pi J_o (\frac{R^2}{2} - \frac{R^2}{3R})
$$
\n
$$
= 2\pi J_o (\frac{R^2}{2} - \frac{R^2}{3R})
$$
\n
$$
= \cancel{2\pi J_o R^2 (\frac{1}{\beta})_3}
$$
\n
$$
= \frac{2\pi \sqrt{R}}{2}
$$
\n
$$
= \frac{2\pi J_o R^2}{2}
$$

 $\rho \int$

 $\frac{\lambda}{2}$

> X

(b): 10 points

Suppose now that the current density falls off as a function of time:

$$
\vec{J}(\rho, t) = J_0 \left(1 - \frac{\rho}{R} \right) \left(1 - \frac{t}{\tau} \right) \hat{z}
$$

where τ is a constant and $0 \le t \le \tau$. Calculate the electric field everywhere outside the wire, in terms of $\mu_0, \epsilon_0, J_0, R, \tau$, and any spatial coordinates and/or time. [Hint: the electric field will point along the *z* axis. Use Faraday's law and integrate around a rectangle whose base and top are parallel to the *z* axis.] [Note: you will only be able to calculate the electric field up to an arbitrary constant; this is ok.] у

$$
\oint E d\vec{l} = -\frac{d\Phi_{B}}{dt} (29.10)
$$
\n
$$
P > R, 50
$$
\n
$$
B = \frac{\mu_{0} J_{0} R^{2}}{L P} (1 - \frac{L}{T})
$$
 (from part a)\n
$$
\Phi_{B} = \int B dA (27.10), dA = L dP
$$
\n
$$
= \frac{\mu_{0} J_{0} R^{2}}{L} (1 - \frac{L}{T}) \int_{\rho}^{\rho + W} \frac{1}{P} dP
$$
\n
$$
= \frac{\mu_{0} J_{0} R^{2}}{L} (1 - \frac{L}{T}) ln(\frac{\rho + W}{\rho})
$$
\n
$$
\int_{\rho} e^{S} \frac{d \Phi_{B}}{dt} = \frac{\mu_{0} J_{0} R^{2}}{L T} ln(\frac{\rho + W}{\rho})
$$
\n
$$
\oint \vec{E} d\vec{l} = \frac{\mu_{0} J_{0} R^{2}}{L T} ln(\frac{\rho + W}{\rho})
$$
\n
$$
= \frac{\mu_{0} J_{0} R^{2}}{L T} ln(\frac{\rho + W}{\rho})
$$
\n
$$
= \frac{\mu_{0} J_{0} R^{2}}{L T} ln(\frac{\rho + W}{\rho})
$$

20 points

(equation # in textoook)

Consider the circuit drawn below. Let I_1 be the current flowing through the 4.3 k Ω resistor,, I_2 be the current flowing through the 1.2 k Ω resistor, and I_3 be the current flowing through the 170 mH inductor.

Using Kirchhoff's Rules,
\n1)
$$
I_1 = I_2 + I_3
$$

\n2) $\xi - I_1 R_1 - I_2 R_2 = 0$
\n3) $\xi - I_1 R_1 - L_1 d_3 = 0$ (30.13)

(a): 5 points

Suppose S_1 has been closed for a long time, $(-\infty < t < 0)$, and the emf source drives a steady current.
Calculate I_1, I_2, I_3 .

(b): 5 points

At time $t = 0$, S_1 is opened and S_2 is closed, so that the emf source is no longer connected and current flows through the bottom branch. Calculate I_1, I_2, I_3 just after this happens.

n0W using KIVChhoff's Rule,
\n3) - I₁R₁ - L dI₃ = 0
\n
$$
\frac{dI}{dt} = \frac{I_1R_1 - Re_1}{L}
$$
\n
$$
\frac{dI}{dt} = \frac{I_1Re_1}{L}
$$
\n
$$
\frac{dI}{dt} = \frac{I_1Re_1}{L}
$$
\n
$$
\frac{I_1}{L} = \frac{I_1L \times 10^{-3} \text{ A}}{L_2 = 0}
$$
\n
$$
\frac{I_1}{L} = \frac{I_1L \times 10^{-3} \text{ A}}{L_3 = 0}
$$
\n
$$
\frac{I_1}{L} = \frac{I_1L \times 10^{-3} \text{ A}}{L_3 = 0}
$$
\n
$$
\frac{I_1}{L} = I_0 e^{-Rt}L + (30.18)
$$
\n
$$
R = I_0
$$

(c): 5 points

Calculate I_1, I_2, I_3 in the limit $t \to \infty$.

$$
I = I_0 e^{-Rt}t
$$

\n
$$
\lim_{t \to \infty} I_0 e^{-Rt}t
$$

\n
$$
= I_0 e^{-\infty}
$$

\n
$$
= I_0(0)
$$

\n
$$
= 0
$$

\n
$$
I_1 = I_2 = I_3 = 0
$$

\n
$$
I_0 = I_2 = I_3 = 0
$$

(d): 5 points

Calculate the total energy dissipated in all resistors during the time period $0 < t < \infty$.

energy dissipated through both resistors
\nenergy dissipated =
$$
\frac{T^2 Re_4 (30.19)}{2} dt
$$

\n= $Re_1 \int_{0}^{\infty} (I_0 e^{-Re_1 t})^2 dt$
\n= $Re_1 I_0^2 \int_{0}^{\infty} (e^{-Re_1 t})^2 dt$
\n= $Re_1 I_0^2 \left[-\frac{L}{2Re_1}e^{-2Re_1 t}\right]_0^{\infty}$
\n= $-\frac{T_0^2 L}{2} (0-1)$
\n= $\frac{T_0^2 L}{2}$
\n= $\frac{(1.16 \times 10^{-3})^2 (0.17)}{2}$

10 points

(a): 5 points

 $\left(\right.$ equation $\left. \text{#} \right.$ in textoook)

Consider the following vector field:

$$
\vec{V}(r,\theta,\phi) = \alpha \frac{1}{r^2} \hat{r},
$$

where α is a constant with units $T \cdot m^2$, r is the distance from the origin, and \hat{r} is a unit vector pointing away from the origin. According to Maxwell's equations, could this represent a magnetic field? Explain.

The only Maxwell equation that restricts whether fields
\ncan be magnet fields is
\n
$$
\nabla \cdot \vec{B} = 0
$$
\n
$$
= \frac{1}{r^2} \frac{d}{dr} \left(p^2 \alpha \frac{1}{r^2} \right) \le \frac{\text{divergence in}}{\text{spherical coordinate}}
$$
\n
$$
= 0 \times \frac{d}{dr} \left(p^2 \alpha \frac{1}{r^2} \right) \le \frac{1}{r^2} \
$$

(b): 5 points

Consider the following electric and magnetic fields:

^E[~] ⁼ *^E*⁰ p2 cos (!(*t z/c*)) (ˆ*y x*ˆ) *^B*[~] ⁼ *^E*⁰ *c* p2 cos (!(*t z/c*)) (*y*ˆ *x*ˆ)*.*

 \sim < -1, 1, D > is in this

Can these fields constitute a traveling electromagnetic plane wave in vacuum? If yes, prove it. If not, explain why not.

conditions 1. \vec{E} and \vec{B} are \perp (from $\oint \vec{E} \cdot dA = \oint \vec{B} \cdot dA = 0$)
 $\langle -1, 1, 0 \rangle \cdot \langle -1, -1, 0 \rangle = 1 - 1 = 0$, so they are \perp V $2.E_0 = CB_0 (32.4)$ (from Faraday's Law) $rac{E_0}{\sqrt{2}} = k \frac{E_0}{\sqrt{17}}$ 3. Bo = $\epsilon_0 \mu_0$ CE₀ (32.8) (from Amperc's Law) this is sansfied in vacuum because c = Page 10yes, it satisfies Maxwell's equations NEoMo

10 points

(equation # in textbook)

Consider an LRC series circuit driven with an ac source $v(t) = V_0 \cos(\omega t)$. You may use without proof the impedance and phase of an LRC series circuit.

(a): 5 points

Calculate the total energy dissipated in the resistor over one cycle if the system is driven at its resonant frequency.

$$
ar resonance frequency,\n
$$
\omega_{0} = \frac{1}{\sqrt{LC}} (31.32)
$$
\n
$$
T = 2\pi \sqrt{LC}
$$
\n
$$
P = \frac{V^{2}}{R} (25.18)
$$
\n
$$
Total energy = \int_{0}^{2\pi\sqrt{LC}} \frac{(V_{0}cos(\frac{L}{10C}))^{2}}{R} dt
$$
\n
$$
= \frac{V_{0}^{2}}{R} \int_{0}^{2\pi\sqrt{LC}} cos^{2}(\frac{L}{10C}) dt
$$
\n
$$
= \frac{V_{0}^{2}}{R} [\frac{L}{2} + \frac{\sqrt{LC}}{4} sin(\frac{2L}{10C})] \Big|_{0}^{2\pi\sqrt{LC}}
$$
\n
$$
= \frac{V_{0}^{2}}{R} (\frac{2\pi\sqrt{LC}}{Z})
$$
\n
$$
= \frac{V_{0}^{2}\pi\sqrt{LC}}{R}
$$
$$

(b): 5 points

Calculate the total energy dissipated in the resistor over one cycle if the system is driven at *twice* its resonant frequency. Is it greater than or less than the energy found in part (a)?

in this case,
\n
$$
\omega = 2\omega_o
$$
\n
$$
= \frac{2}{\sqrt{LC}}
$$
\n
$$
T = \frac{2\pi}{\omega} = \pi \sqrt{LC}
$$
\n
$$
Total energy = \int_0^{\pi \sqrt{LC}} \frac{(\sqrt{o} \cos(\frac{2\pi}{\sqrt{LC}}))^{2}}{R} dt
$$
\n
$$
= \frac{V_0^{2}}{R} \int_0^{\pi \sqrt{LC}} \cos^2(\frac{2\pi}{\sqrt{LC}}) dt
$$
\n
$$
= \frac{V_0^{2}}{R} \left[\frac{F}{2} + \frac{\sqrt{LC}}{S} \sin(\frac{4\pi}{\sqrt{LC}}) \right] \Big|_0^{\pi \sqrt{LC}}
$$
\n
$$
= \frac{V_0^{2}}{R} \left(\frac{\pi \sqrt{LC}}{2} \right)
$$
\n
$$
= \frac{V_0^{2} \pi \sqrt{LC}}{2R}
$$

it is V2 of the evergy found in part a., so it is less than the eviergy found in part a.