

Problem 5 (10 pts): At time t=0, the current through a 40.0mH inductor is 30.0 mA and is increasing steadily at the rate of 120 mA/s.

a) (5 pts) What is the energy stored in the inductor at time t=0?

b) (5 pts) How long does it take for the energy to increase by a factor 9 from the initial value?

a)
$$U=\frac{1}{2}$$
 $t=0$
 $I_{0}=\frac{30.0 \times 10^{-3} A}{dt}$
 $U=\frac{1}{2}LI^{2}$
 $U=\frac{1}{2}(40.0 \times 10^{-3})(30.0 \times 10^{-3})^{2}$

$$U=\frac{1}{2}(40.0 \times 10^{-5})(30.0 \times 10^{-3})^{2}$$

$$U=\frac{1}{2}(40.0 \times 10^{-5})$$

b) 9U,=
$$\frac{1}{2} L_0 \left(L_0 + \frac{dt}{dt} t \right)^2$$

$$\int \frac{18U_0}{L_0} = \int \frac{1}{U_0} + \frac{dI_0}{dt} dt$$

$$\int \frac{18U_0}{L_0} - \int \frac{1}{U_0} dt$$

0,06

Problem 4 (10 pts): In the figure below, the magnetic flux through the loop perpendicular to the plane of the coil and directed into the paper is varying according to the relation

$$\Phi_{\rm m} = 4t^2 + 7t + 1,$$

where Φ_{m} is in milli-webers, and t is in seconds.

- a) (6 pts) What is the magnitude of the EMF induced in the loop when t=3.0 sec?
- b) (4 pts) What is the direction of the current through resistor R at that time?

9)
$$\varepsilon$$
 when $\varepsilon = 3.05$?
$$\varepsilon = -\frac{d \varepsilon}{d \varepsilon} = -\frac{d}{d \varepsilon} \left(\frac{4(\varepsilon^2 + 7\varepsilon + 1)}{4\varepsilon} \right)$$

$$\varepsilon = -\frac{3}{5} + \frac{7}{5} = \frac{1}{5} \left(\frac{4(\varepsilon^2 + 7\varepsilon + 1)}{4\varepsilon} \right)$$

$$\varepsilon = -\frac{3}{5} + \frac{7}{5} = \frac{1}{5} \left(\frac{4(\varepsilon^2 + 7\varepsilon + 1)}{4\varepsilon} \right)$$

$$\varepsilon = -\frac{3}{5} + \frac{7}{5} = \frac{1}{5} = \frac{1}{5$$

D = 462+7++1

h) According to Lenz's Law, It will oppose the original B field.

Since original B field is pointing into the venger, the indiceof.

One will be pointing out (B is increasing). This means that the current through positor R is going from left to right.

× V

- a) (3 pts) each straight segment of length l
- b) (5 pts) the semicircular segment of radius R, and
- c) (2 pts) the entire wire.

there is no angle

F = 186

F=1Absing

Problem 2 (10 pts): Electromagnetic rail guns work using Lorentz force to launch high velocity projectiles, by means of a sliding armature that is accelerated along a pair of conductive rails carrying a very large current.

Model such a device by assuming that a metal wire slides without friction on two rails spaced by 0.5 m apart, as in the figure below. The wire carries a projectile, and the combined mass of wire plus projectile is 0.8 kg. Assume there is a constant magnetic field of 0.25 T everywhere between the rails (this is a simplification), and a constant current of $7x10^4$ amps flows from the generator G along one rail, across the wire, and back down the other rail.

- a) (2 pts) Indicate the direction of force F on the wire on the diagram below.
- b) (4 pts) Find the magnitude of the force on the wire.
- c) (4 pts) Find the velocity v after 0.20 sec, assuming it to be at rest at t=0.

Problem 1 (10 pts): The current in a long solenoid of radius 5 cm and 1200 turns per meter is varied with time at a rate of 4000 A/s. A coil with twelve loops of radius 7 cm and resistance 1.1Ω surrounds the solenoid. Find the electrical current induced in the loop.

1.1 So surrounds the solenoid. Find the electrical current induced in the surple
$$\frac{dI}{dt} = 4010$$

$$R = 4010$$

$$R = 4010$$

$$R = -0.5 \text{ m}$$

$$R_1 = 1200$$

$$R_2 = \frac{1}{2}$$

$$R_3 = \frac{1}{2}$$

$$R_4 = \frac{1}{2}$$

$$R_5 = \frac{1}{2}$$

$$R_5$$

$$M = N_2 \frac{E_{24}}{E_{1}} \rightarrow M = N_2 \frac{M_0 N_1 N_1^2}{N_1^2}$$

$$M = N_2 \frac{M_0 N_1 N_1^2}{N_1^2}$$

$$M = 1.42 \times 10^{-4} \text{ H}$$

$$|\mathcal{E}_{2}|^{2} - M \frac{d^{2}}{dt}$$

$$|\mathcal{E}_{2}|^{2} = (1.42 + 10^{-4}) (4000) = 0.568 V$$

$$|\mathcal{E}_{2}|^{2} = I_{2} R_{2}$$

$$|\mathcal{E}_{2}|^{2} = \frac{\mathcal{E}_{2}}{R_{2}} = \frac{(0.568)}{1.1} = 0.52 A$$

		Student ID #: 804789345
		(show your student ID card when handing in your exam) Signature:
		31 October 2017
		Physics 1C Midterm #1
		Version B
Do not oper	n this exam until ins	structed to begin. You have 50 minutes to complete this exam.
		step of your calculation, box your answers so we can find them, an units unless told otherwise.
The graded	exams will be return	ned on Thursday.
ore:		
	1.	
	2.	
	3.	
	4.	/10 points
	5.	
	Total	/50 points

Christian Rodring

Name:_

1