# PHYSICS 1C: Electrodynamics, Optics, and Special Relativity

Fall 2017, Lecture Series 2

### Midterm 1—Thursday 26th October

#### Version C

Time allowed: 50 minutes

#### Answer all questions.

### Calculators are permitted in this exam

The numbers in the margin indicate the weight that the examiners expect to assign to each part of the question.

# Do NOT turn over until told that you may do so.

| Question | Points      |
|----------|-------------|
| 1        | √ 6         |
| 2        | <b>%</b> /6 |
| 3        | 12 /12      |
| 4        | 24 /25      |
| 5        | 25/25       |
| 6        | 26/26       |

## Section A

- 1. The figure below shows a conducting metallic strip experiencing a current in the x-direction (with density  $J_x$ ) and a magnetic field in y-direction (with strength  $B_y$ ). Also shown is a single, negatively charged, conduction electron.
  - Add arrows to the diagram to indicate the drift velocity of the electron  $\vec{\mathbf{v}}_d$  and the magnetic force it experiences  $\vec{\mathbf{F}}_B$ .
  - Add '+' and '-' signs to the diagram to indicate the resulting build-up of charge.
  - $\bullet$  Add an arrow  $\vec{\mathbf{E}}$  to show the electrostatic field that is developed by the charge separation.
  - Add an arrow  $\vec{\mathbf{F}}_E$  to show the electric force experienced by the electron.

[6]



2. The figure below shows a diamagnetic material (on the left) close to the north pole of a permanent magnet (on the right). Indicate the direction of the dipoles in the diamagnetic material, and add an arrow\_to show the direction of the resulting force.





Are the dipoles above pre-existing or induced?

Induced

What would be a suitable value of the relative permeability  $K_m$  for a diamagnetic material?

Km < 1 for Diagnognetic material e.g. Km = .5 [6]

3. The movement of an aeroplane through the Earth's magnetic field may generate a motional emf between the tips of its wings. By modelling the region between the wings as a conducting rod of length L=60 m travelling at a speed of v=100 m/s, estimate the magnitude of the motional emf. You may assume that the Earth's magnetic field has strength  $B=5\times 10^{-5}$  T and points vertically downwards, and that the plane is flying horizontally with respect to the magnetic field, as shown in the figure below.

[12]

$$F_{E} = F_{B}$$

$$q_{E} = q_{V}B$$

$$E = VBL$$

$$(= EL = VBL)$$

$$(= (1.10^{2})(6.10^{4})(5.10^{4})$$

$$(= 30.10^{2} = .3 V)$$

### Section B

4. Ryan and Bryan are using stationary bicycles as generators to power a set of light bulbs. Ryan's bicycle has its pedals connected directly to the rotating loop of an alternator circuit, which has area A and rotates with angular velocity  $\omega$  in a magnetic field  $\vec{\mathbf{B}}$ . This rotating loop is connected via slip rings and brush contacts to a circuit with terminals labelled a and b, as shown in the figure below.



(a) If Ryan is pedalling at a constant angular velocity  $\omega$ , find an expression for the induced emf  $\mathcal{E}(t)$  around the loop as a function of time. [Assume the vector area of the loop  $\vec{\mathbf{A}}$  is parallel to  $\vec{\mathbf{B}}$  at t=0.]

[10]

$$\frac{(+) - \partial (BAccs(\omega +))}{\partial t} = -BA(-\omega sin \omega +)$$

(b) Ryan and Bryan have identical bicycle generators and are both pedalling at the same angular velocity  $\omega$ . However, Ryan's circuit is connected to a single light bulb with resistance R, whereas Bryan's circuit is connected to four identical light bulbs in parallel, as shown in the figure below. [Light bulbs are represented by  $\otimes$  and the generator is represented by the letter G.]



What is the current drawn by each circuit as a function of time, in terms of B, A,  $\omega$  and R? [Assume the only resistance in each circuit is due to the lightbulbs]. Find an expression for the peak power delivered to the circuit by each rider. Who is experiencing the largest back-torque, and why?

[15]

Ryan: 
$$G(t) = BAash(at)$$
 $T(t) = \frac{E}{R} = \frac{BAa}{R}sin(at)$ 
 $F(t) = \frac{E}{R} = \frac{BAa}{R}sin(at)$ 
 $F(t) = \frac{BA}{R}sin(at)$ 
 $F(t) = \frac{BA}{R}sin(at)$ 

PmaxR = BLAZaz

PmaxB = 4BZAZaz

R

Bryan experiences of larger back torque as more power is required for the circuit with 4 bylbs in parallely which must be supplied by the generator

-1 no meantlon to current

5. A circular loop of wire of radius a lies in the xy-plane centred at the origin. It is immersed in a uniform magnetic flux density  $\vec{\mathbf{B}} = (0, B_y, B_z)$ . A current I is flowing in the loop in a right-handed sense around the positive z-direction, as shown below.



The line element  $d\vec{l}$  shown in the figure may be expressed as

$$d\vec{\mathbf{l}} = ad\theta \left[ -\sin\theta \hat{\mathbf{i}} + \cos\theta \hat{\mathbf{j}} \right],$$

where  $\hat{\mathbf{i}}$  and  $\hat{\mathbf{j}}$  are unit vectors along the x and y directions (respectively).

(a) Find an expression for the magnetic force  $d\vec{F}$  on this element. Hence show that the total force on the loop is zero. [You may need to use the next page]. [13]  $\vec{F} = \vec{I} \quad \vec{J} \times \vec{R}$   $\vec{J} = \vec{J} \quad \vec{J} \times \vec{R}$   $\vec{J} = \vec{J} \quad \vec{J} \times \vec{R}$   $\vec{J} = \vec{J} \quad \vec{J} \quad \vec{J} \times \vec{R}$   $\vec{J} = \vec{J} \quad \vec{J} \quad \vec{J} \quad \vec{J} \times \vec{R}$   $\vec{J} = \vec{J} \quad \vec{J$ 

OBY BZ

(b) Write down an expression for the magnetic dipole moment  $\vec{\mu}$  of the loop, and hence calculate the total torque  $\vec{\tau}$  it experiences. Draw a diagram to indicate the direction of rotation.

[12]

$$\begin{array}{lll}
\mathcal{L} = \tilde{A} & \tilde{A} & \tilde{A} = \langle O_{1} & B_{1} & B_{2} \rangle \\
\tilde{A} & \tilde{A} & \tilde{A} = \langle O_{2} & O_{2} & \pi_{0} + I \rangle \times \langle O_{2} & B_{1} & B_{2} \rangle \\
\tilde{A} & \tilde{$$

(a) A long conducting cylindrical wire of radius a carries a current  $I_0$  distributed uniformly across its cross-sectional area. Use Ampère's law to obtain an expression for the magnitude of the magnetic field a distance r > a from the axis outside the cylinder.

[10]



(b) A different long conducting cylindrical wire has a cylindrical cavity along its length, resulting in the cross-section indicated by the shaded area in the diagram below. The wire carries a current I<sub>0</sub> uniformly distributed over its cross-section. Using your result from part (a), or otherwise, derive expressions for the magnitude of the magnetic field at the points A, B and C indicated on the diagram.

[16]

$$9a^{2}ta^{2}=(0a^{2})$$

$$= \sqrt{10}$$

$$B(A) = \frac{M_0}{2\pi} \left( \frac{4}{3} + \frac{1}{6}, \frac{1}{2q} - \frac{1}{3} + \frac{1}{6}, \frac{1}{2q} \right) = \frac{40}{12\pi} + \frac{7}{47} \left( \frac{5}{18} \right)$$

$$B(B) = \frac{M_0}{2\pi} \left( \frac{4}{3} + \frac{1}{6}, \frac{1}{3q} - \frac{1}{3} + \frac{1}{6}, \frac{1}{4q} \right) = \frac{40}{12\pi} + \frac{7}{47} \left( \frac{7}{18} \right)$$

$$B(C) = \frac{M_0}{2\pi} \left( \frac{4}{3} + \frac{1}{6}, \frac{1}{3q} - \frac{1}{3} + \frac{1}{6}, \frac{1}{4q} \right) = \frac{M_0}{2\pi} + \frac{7}{47} \left( \frac{1}{36} \right)$$

$$B(C) = \frac{M_0}{2\pi} \left( \frac{4}{3} + \frac{1}{6}, \frac{1}{3q} - \frac{1}{3} + \frac{1}{6}, \frac{1}{4q} \right) = \frac{M_0}{2\pi} + \frac{7}{47} \left( \frac{1}{36} \right)$$