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Section A

1. The figure below shows a conducting metallic strip experiencing a current in the
z-direction (with density J;) and a magnetic field in y-direction (with strength By).
Also shown is a single, negatively charged, conduction electron.

/¢ Add arrows to the diagram to indicate the drift velocity of the electron V4 and

the magnetic force it experiences Fpg.

\/o Add ‘4’ and ‘~’ signs to the diagram to indicate the resulting build-up of charge.

. /e Add an arrow E to show the electrostatic field that is developed by the charge

separation.

\J/ e Add an arrow Fg to show the electric force experienced by the electron.
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2. The figure below shows a diamagnetic material (on the left) close to the north
pole of a permanent magnet (on the right). Indicate the direction of the dipoles in the
diamagnetic material, and add an arrow to show the direction of the resulting force.
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Are the dipoles above pre-existing or induced?
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What would be a suitable value of the relative permeability K, for a diamagnetic
material? /< '\ (6]
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3. The movement of an aeroplane through the Earth’s magnetic field may generate a
motional emf between the tips of its wings. By modelling the region between the wings
as a conducting rod of length L = 50 m travelling at a speed of v =100 m/s, estimate
the magnitude of the motional emf. You may assume that the Earth’s magnetic field
has strength B = 5 x 10~3 T and points vertically downwards, and that the plane is
flying horizontally with respect to the magnetic field, as shown in the figure below.
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Section B

4. Ryan and Bryan are using stationary bicycles as generators to power a set of
light bulbs. Ryan’s bicycle has its pedals connected directly to the rotating loop of an
alternator circuit, which has area A and rotates with angular velocity w in a magnetic
field B. This rotating loop is connected via slip rings and brush contacts to a circuit
with terminals labelled a and b, as shown in the figure below.

To Pedals

(a) If Ryan is pedalling at a constant angular velocity w, find an expression for the

induced emf £(t) around the loop as a function of time. [Assume the vector area
of the loop A is parallel to B at t = 0]
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(b) Ryan and Bryan have identical bicycle generators and are both pedalling at the
same angular velocity w. However, Ryan’s circuit is connected to a single light
bulb with resistance R, whereas Bryan’s circuit is connected to four identical light
bulbs in parallel, as shown in the figure below. [Light bulbs are represented by ®
and the generator is represented by the letter G.]

Ryan's Circuit Bryan's Circuit

&y 4 e

What is the current drawn by each circuit as a function of time, in terms of B,
A, w and R? [Assume the only resistance in each circuit is due to the lightbulbs].
Find an expression for the peak power delivered to the circuit by each rider. Who

is experiencing the largest back-torque, and why? [15]
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5. A circular loop of wire of radius a lies in the zy-plane centred at tth;is ﬂilwing o
immersed in a uniform magnetic flux density B = (0, Byz B, )'- A curr}en below
the loop in a right-handed sense around the positive z-direction, as shown .

The line element dI shown in the figure may be expressed as
dl = qds [— sin 6i + cos 03] )

where { 3 .
€re 1 and j are unit vectors along the z and y directions (respectively).
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6.

(a) A long conducting cylindrical wire of radius a carries a current I distributed
uniformly across its cross-sectional area. Use Ampere’s law to obtain an expression
for the magnitude of the magnetic field a distance r > a from the axis outside the
cylinder. [10]
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(b) A different long conducting cylindrical wire has a cylindrical cavity along its

length, resulting in the cross-section indicated by the shaded area in the diagram
below. The wire carries a

current [y uniformly distributed over its cross-section.
Using your result from part (a),

or otherwise, derive expressions for the magnitude
of the magnetic field at the points A, B and C indicated on the diagram.
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