Short Answer questions Partial credit may be given based on your explanation. 1a) (6 pts) What is the direction of the current in resistor ab of the (familiar) figure below when switch S is opened after having been closed for several minutes. 1b) (6 pts) A magnet is brought close to a diamagnetic material. What happens? 1c) (6 pts) A magnet that produces 1×10^{-5} T at point P. Some unmagnetized, room-temperature iron placed at that point. Approximately what magnetic field is produced in the iron? (Hint: a wide range of values is acceptable here.) ## Short-answer (continued) 1d) (6 pts) Consider the circuit below. Suppose the battery has a 1.5 Volt EMF and that resistor R_1 =1 $k\Omega$ and R_2 =2 $k\Omega$. A long time after the switch is closed, what is the current through resistor R_2 ? 1e) (6 pts) A battery is connected to a parallel-plate capacitor with circular plates of radius a=3cm, shown below. There is only air or vacuum between the two plates. A constant current of 3A flows onto one plate of the capacitor and off of its other plate from wires connected to the center of the plates. At a Point P, r=2 cm from the centerline of the capacitor, what is the magnetic field? (For simplicity, assume the electric field does not fringe outside the capacitor.) $$i_{end} = 3A \left(\frac{2}{3}\right)^{Z} = (3A)\left(\frac{4}{9}\right) = \frac{4}{3}A = 1.33A$$ $$displacement$$ $$everter$$ $$Arripare's Lam: (B)(2\pi r) = M_0 I_{enc} I$$ $$B = \frac{(4\pi \times 10^{-7})(1.33A)}{(2\pi)(0.0a)} = 1.33 \times 10^{-5} T$$ 1f) (6 points) You have an inductor with inductance 8mH. Design a circuit that would allow a current to oscillate at 1 kHz. You may choose any resistor or capacitor. - (Next two problems) An 8H inductor is hooked up to a 4V battery .The inductor's wire has a resistance of 2Ω and the battery has negligible resistance. After 20 minutes,... - 1g) (6 pts) How much energy is stored in the magnetic field of the inductor? V=1R = $$I = \frac{4V}{3R} = 0$$ $$V = 1R = \frac{4V}{3R} = 2A$$ $$V = \frac{1}{2}LI^{2} = (\frac{1}{2})(8)(3)^{2} = 16J$$ 1h) (6 pts) The battery suddenly runs out (i.e., its EMF becomes zero but it still conducts current), what fraction of the current is still circulating seconds later? $$I(t) = Ioe^{-t/e} \quad v = \frac{1}{e} \quad (time \ constant)$$ $$= 8/d = 4sec$$ $$faction \ of curent$$ $$= I(t = 6sec) = 10e^{-t/e} \quad = e^{-3} = 590$$ $$remaining$$ 1i) (6 points) Express the units of magnetic flux in terms of the basic SI units. Use any equation for units on B: $$F = II \times B$$ $\frac{kg-x}{A-5} = A-m \cdot I$ $I = \frac{kg-m^2}{A-5^2}$ $I = \frac{kg-m^2}{A-5^2}$ Medium-length problem 2) (15 pts) A charge of 5μ C is passing along the x-axis in the positive direction with speed 4×10^6 m/s. At the moment the particle passes through the origin, what is the magnitude of the magnetic field it creates at the point (x,y,z)=(1.0, 1.0, 0) meters? magnitude of the magnetic field it creates at the point $$(x,y,z)=(1.8)^{-1}$$ Biot Sovat $\vec{B} = \frac{M_0}{4\pi} \frac{\vec{q} \cdot \vec{r} \cdot \vec{r}}{r^2}$ V and \hat{r} are in plane of page So $\vec{B} = \vec{B} \neq \hat{z}$ or $|\vec{B}| = |\vec{B} \neq 1$ $$|B| = \frac{(4\pi \times 10^{-7})(5 \times 10^{-6})(4 \times 10^{6})(1) \sin 45^{\circ}}{4\pi}$$ $$= \frac{7!}{7!} \times 10^{-7} T$$ 3) Short Essay (15 pts) In class we performed a demo where a battery caused the armature of a motor to turn. It is often said that "Every motor is also a generator and every generator is also a motor". Was that the case here? Explain using a diagram why or why not. (For simplicity, don't worry about whether it was a DC or AC motor.) Work-out problem: 4) (16 pts) The figure below shows the cross section of an infinitely long hollow cylindrical conductor of inner radius a=1m and outer radius b=3m with current flowing into the page. The current density j(r) is given by $j_0*(k/r)^2$, where $j_0=3$ A/m² and k=2 meters. What is the magnetic field at r=2 meters? $$\begin{split} SB.dl &= M_0 \text{ Iencl} \\ (B)(a\pi r) &= M_0 \int_0^r j_0\left(\frac{k^2}{r'^2}\right) r' dr' \int_0^2 d\theta \\ &= M_0 \int_0^r k^2 (a\pi) \int_a^r \frac{dr'}{r'} \\ B &= M_0 \int_0^r k^2 (a\pi) \ln(7a) \\ &= (4\pi \times 10^{-2})(3)(2)^2 \ln(2/1) \end{aligned}$$ $$\begin{split} B &= 5, 22 \times 10^{-6} T \end{split}$$ ## Extra Credit problem EC) (10 pts) Scientists at a top-secret government laboratory recently invented a new super-inductor that produces a counter-EMF ("back EMF") proportional to $d^3i(t)/dt^3$ that opposes the change in current. I.e., for a constant S, $EMF = -S d^3i(t)/dt^3$. 6400 Suppose each end of a *super-inductor* with S=3 (in SI units) is connected to the opposite sides of a resistor, with resistance $R=100\Omega$. At time t=0, there is a current of 3 A through the circuit. What is the current A seconds later? the circuit. What is the current seconds later? $$-iR - S \frac{d^3i}{dt^3} = 0$$ $$\frac{d^3i}{dt^3} = -\frac{R}{s} i(t)$$ Exponentials are their own dervotive so try $$i(t) = Io e^{-t/x}$$ $$\frac{1}{t^3} = \frac{1}{s}