MT1 Physics 1C F19(1)

Full Name (Printed)

Full Name (Signatu

Student ID Number

Seat Number

Problem	Grade	
1	02	/30
2	16	/30
3	21	/30
Total	39	/90

- Do not peek at the exam until you are told to begin. You will have approximately 50 minutes to complete the exam.
- Don't spend too much time on any one problem. Solve 'easy' problems first. Go for partial credit!
- HINT: Focus on the concepts involved in the problem, the tools to be used, and the set-up. If you get these right, all that's left is algebra.
- Have Fun!

A uniform disk of charge Q and radius R spins about its perpendicular symmetry axis with an angular velocity $\vec{\omega}$ (as shown in the left diagram above). Derive the (vector) magnetic dipole moment of the distribution.

$$\frac{\mathcal{I}}{B} = \frac{\mathcal{I}}{4n^2R^4} \int d\vec{s}$$

$$\frac{1}{4n^2R^3} = \frac{\mathcal{I}}{4n^2R^3}$$

$$\frac{1}{4n^2R^3} = \frac{\mathcal{I}}{4n^2R^3}$$

A uniform sphere of charge Q and radius R spins about an axis that passes through • 1b) (10 points) its center with an angular velocity $\vec{\omega}$ (as shown in the right diagram above). How large a contribution to the total magnetic dipole moment of the sphere will the infinitesimally-thin disk shown in the right

diagram make?

$$Aijk = \frac{Q}{RR}$$

Derive the (vector) magnetic dipole moment of the spinning spherical distribution. • 1c) (5 points)

$$M = NIA$$
 $T = \vec{n} \times \vec{B}$

When placed in a uniform magnetic field B, the sphere precesses with an angular frequency Ω . Assuming its mass is also uniformly distributed, find the charge-to-mass ratio for the • 1d) (5 points) sphere.

2) Two thin, parallel, conducting sheets of dimension $D \times W$ are separated by a distance d as shown $(D\gg W\gg d)$. The sheets each carry a linear current density K, one into the plane of the page, one out, as shown.

2a) (10 points) Use your knowledge of the magnetic field in and around long, wide current sheets to obtain a qualitative description of the magnetic field in the region between the sheets and in the regions outside the sheets. Follow that up by actually finding the magnetic field in each of those regions.

Bio between = 2 Molling Binbernen = Molling Bi

Use Faraday's law to calculate the self-inductance of the arrangement. • 2b) (10 points)

• 2b) (10 points) Use Faraday
$$= \frac{2i}{\omega t}$$

Jule = dwn, n II

3) The following questions all refer to the circuit shown above. For convenience, we'll refer to the branch that contains the resistor and inductor as branch 1 and the branch that contains the capacitor as branch 2.

Will the current through branch 1 lead or lag the voltage across it? By how much?

Will the current through branch 2 lead or lag the voltage across it? By how much? 2 R = Factor R

• 3e) (5 points) At what frequency will the effective impedance seen by the source look purely resistive?

$$\chi_{L} = \chi_{L} - \omega_{L} = \omega_{L} - \omega_{L} = \omega_{L}$$

$$\omega = \int_{-\infty}^{\infty} \frac{2\pi}{2\pi} = \int_{-\infty}^{\infty} \frac{2\pi}{2\pi} = \int_{-\infty}^{\infty} \frac{2\pi}{2\pi}$$

$$\omega = \chi_{L} - \chi_{L}$$

$$\omega = \chi_{L} - \chi_{L}$$

• 3f) (5 points) How large is the effective impedance when the driving frequency is tuned so that it is purely resistive?

$$7 = \sqrt{R}$$

• 1a) (10 points) A uniform disk of charge Q and radius R spins about its perpendicular symmetry axis with an angular velocity \$\tilde{\pi}\$ (as shown in the left diagram above). Derive the (vector) magnetic dipole moment of the distribution.

dipole moment of the distribution.

Build the disk up with in finitesimal rings ...
$$(dq, \vec{w}, r)$$

$$d\vec{n} = \frac{1}{2}dq, r^2 \vec{w}$$

$$d\vec{\mu} = \frac{1}{2}\frac{2Q}{R^2}r^3 dr \vec{w}$$

$$\vec{\mu} = \int d\vec{n} - \frac{Q\vec{w}}{R^2}\int_0^R dr r^3$$

$$\vec{\mu} = \frac{1}{2}\frac{Q}{R^2} \frac{R^2}{R^2} \vec{w}$$

$$\vec{\mu} = \frac{1}{2}\frac{Q}{R^2} \frac{R^2}{R^2} \vec{w}$$

$$\vec{\mu} = \frac{1}{2}\frac{Q}{R^2} \frac{R^2}{R^2} \vec{w}$$

$$\vec{\mu} = \frac{1}{2}\frac{Q}{R^2} \vec{w}$$

tb) (10 points) A uniform sphere of charge Q and radius R spins about an axis that passes through
its center with an angular velocity G (as shown in the right diagram above). How large a contribution
to the total magnetic dipole moment of the sphere will the infinitesimally-thin disk shown in the right
diagram make?

For an infinitesimal disk
$$(49,17,\vec{\omega})$$
... Some top diagram, $T = R \sin \theta$

$$d\vec{\mu} = \frac{1}{4} d4, T^2 \vec{\omega}$$

$$d\vec{\mu} = \frac{3}{4} \frac{39}{4} (1-6620) d(650) R^2 (1-6620) \vec{\omega}$$

$$d\vec{\mu} = \frac{3}{16} QR^2 \vec{\omega} (1-6620)^2 d(660)$$

2) Two thin, parallel, conducting sheets of dimension $D\times W$ are separated by a distance d as shown $(D\gg W\gg d)$. The sheets each carry a *linear* current density K, one into the plane of the page, one out, as shown.

• 2a) (10 points) Use your knowledge of the magnetic field in and around long, wide current sheets to obtain a qualitative description of the magnetic field in the region between the sheets and in the regions outside the sheets. Follow that up by actually finding the magnetic field in each of those regions.

CUEST de o long, under sinest of Current, the Magnetic field is Uniform, or ented a long the Sheets, directed by the right head role with the Current. The Cantibothous from the top (T) of bottom (B) Sheet are equal in Magnetide of directed as Shean... The left field outside the Sheets is 3 sero "

the Sheets 10 Below top.

\$ \int A \text{Sheets} = \text{Mo Fix.}

\[
\text{Bx} = \text{Mo Kx}
\]

\[
\text{B} = \text{Mo K}
\]

• 2b) (10 points) Use Faraday's law to calculate the self-inductance of the arrangement. $E_i = -\frac{dg_c}{dt}$ where the relevant area is perpendicular to B and spans the heights length of the arrangement,

$$\begin{aligned} &\mathcal{E}_{i} = -\frac{1}{4t} \left(\frac{\mathcal{E}_{i}}{\mathcal{E}_{i}} \right) \\ &\mathcal{E}_{i} = -\frac$$

• 1c) (5 points) Derive the (vector) magnetic dipole moment of the spinning spherical distribution

$$\vec{\mu} = \int d\vec{\mu} = \frac{3}{16} Q R^2 \vec{\omega} \int_{-1}^{1} (1 - \chi^2)^2 d\chi \qquad d\chi = d(200)$$

$$\vec{\mu} = \frac{3}{8} Q R^2 \vec{\omega} \int_{0}^{1} (1 - 2\chi^2 + \chi^4) d\chi$$

$$\vec{\mu} = \frac{1}{5} Q R^2 \vec{\omega}$$

 1d) (5 points) When placed in a uniform magnetic field B, the sphere precesses with an angular frequency Ω. Assuming its mass is also uniformly distributed, find the charge-to-mass ratio for the sphere.

Precent from lecture,
$$\Omega = \sqrt[3]{B_2}$$
 where $\sqrt[3]{\pm} \frac{1}{2} = \frac{1}{5} \frac{QR^2 \vec{\omega}}{mR^2 \vec{\omega}} = \frac{1}{2} \frac{Q}{m}$

$$\frac{Q}{M} = \frac{B}{2 \Omega}$$

• 2c) (10 points) Verify your answer for the self-inductance of the arrangement by using energy considerations.

$$U_{B} = \frac{1}{2} M_{B} R^{2}$$
 $U_{B} = \frac{1}{2} M_{B} K^{2}$
 $U_{B} = \frac{1}{2} M_{B} K^{2}$
 $U_{B} = \frac{1}{2} M_{B} E^{2}$
 $U_{B} = U_{B} \int dV$
 $U_{B} = U_{B} (V_{A})$

but $U_{B} = \frac{1}{2} M_{B} E^{2}$ (Since we picked up all the energy)

3) The following questions all refer to the circuit shown above. For conthat contains the resistor and inductor as branch 1 and the branch that α

• 3b) (5 points) Will the current through branch 1 lead or lag the voltage across it? By how much?

with Current as the reference for the series phase diagram, it books like

• 3c) (5 points) Will the current through branch 2 lead or lag the voltage across it? By how much? Branch 2 only has the Capacitor...

~ 'ICE'

3d) (5 points) Sketch the phasor diagram that will describe how the impedance in branch 2 combines
with the impedance in branch 1 to give us the effective impedance as seen by the voltage source. Clearly
label the diagram with the relevant branch impedances (or inverse-impedances) and phase angles.

$$\frac{1}{Z_{1}} = \sqrt{R^{2} + (WL)^{2}}$$

$$\frac{1}{Z_{2}} = WC$$

$$\frac{1}{Z_{1}}$$

$$\tan \alpha = \frac{WL}{R}$$

• 3e) (5 points) At what frequency will the effective impedance see

From the diagram:
$$\frac{1}{Z_2} = \frac{1}{Z_1} \sin \alpha$$

$$\frac{1}{Z_2} = \frac{\omega L}{Z_1^2}$$

$$\omega C = \frac{\omega L}{R^2 + (\omega L)^2}$$

$$\omega = \sqrt{\frac{1}{LC} - \left(\frac{R}{L}\right)^2}$$

• 3f) (5 points) How large is the effective im

$$\frac{1}{Z} = \frac{1}{Z_1} (26 \times (\omega L)^2 = \frac{L}{C} - R^2$$

$$\frac{1}{Z} = \frac{R}{Z_1^2}$$

$$R^{2}_1 (\omega U)^2 = \frac{L}{C}$$

$$Z_1^2 = \frac{L}{C}$$

$$Z = \frac{RC}{L}$$