Problem 1. In the lab, you encounter a solenoid with unknown inductance. You measure the solenoid with an ohmmeter and find it has internal resistance R. To determine its inductance, you connect the solenoid in series with a known capacitor C and an AC signal generator (AC voltage source) set to frequency ω .

- (a) If the current amplitude is I_0 , find the voltage amplitude $|V_C|$ across the capacitor.
- (b) With the same current, find the total voltage amplitude $|V_{tot}|$ across both the solenoid and capacitor in terms of the unknown inductance L and the known circuit parameters.
- (c) Suppose you don't know the current amplitude, but you measure the two voltage amplitudes in (a) and (b). Find the inductance *L* of the solenoid using these measurements and the known parameters.

(a)
$$\widetilde{V} = \widetilde{\Xi} \widetilde{Z}$$
 $\widetilde{Z}_{c} = -\frac{\overline{i}}{\omega c} \rightarrow |\widetilde{Z}_{c}| = \frac{1}{\omega c}$

$$\frac{|V_{tot}|}{|V_c|} = \frac{I_o \sqrt{R_+^2 (\omega L - \frac{1}{\omega c})^2}}{I_o / (\omega C)} = \omega \left(\sqrt{R_+^2 (\omega L - \frac{1}{\omega c})^2} \right)$$

and solve for L. (Setup worth most of points, but some points for correct algebra.)

Let
$$d = \frac{|V_{tot}|}{|V_c|} = \omega C \sqrt{R^2 + (\omega L - 1/\omega c)^2}$$

$$\rightarrow \chi^2 = \omega^2 C^2 \left(R^2 + \left(\omega L - \frac{1}{\omega c} \right)^2 \right)$$

$$\frac{\alpha^2}{\omega^2 c^2} - R^2 = \left(\omega L - \frac{1}{\omega C}\right)^2$$

$$\omega L - \frac{1}{\omega C} = \pm \sqrt{\frac{\alpha^2}{\omega^2 C^2} - R^2}$$

Problem 2. The magnetic field of a monochromatic, plane EM wave in vacuum is

$$\mathbf{B}_{\text{inc}}(x,t) = B_0 \,\hat{\mathbf{y}} \, \cos(kx - \omega t) \tag{1}$$

- (6) (a) Find the electric field E_{inc} of this wave.
- (6) (b) Find the Poynting vector S_{inc} for this wave.
- (6) Suppose this wave is totally reflected by a thin sheet of a perfect conductor occupying the yz plane at x = 0. What is the force per unit area on this sheet due to the EM field?
- (d) When the wave reflects from the conductor at x = 0, a reflected plane wave traveling opposite the direction of the incident wave is formed. The total electric field E_{tot} is a superposition of the incident and reflected fields, $E_{tot} = E_{inc} + E_{ref}$. Take for granted that the total electric field parallel to the surface of a perfect conductor is zero, and find the reflected field E_{ref} . $B_o = \frac{1}{k} \times E_o$ $\cos(k \times \omega +) \rightarrow E_o$

(a) Magnitude: Eo=eBo

Direction: $\hat{y} = \hat{x} \times \hat{E}$ by right-hand rule, $\hat{x} \times (-\hat{z}) = \hat{y}$,

80 Ê = -2

(b) $\vec{S}_{inc} = \int_{\infty} \vec{E}_{inc} \times \vec{B}_{inc}$ $= \int_{\infty} cB_{o} \hat{x} \cos^{2}(kx - \omega t)$

(c) force per area = pressure

$$P_{ref} = 2 \frac{\langle S \rangle_T}{C}$$

$$= \frac{2}{C} \frac{\langle B_0^2 \rangle_T}{\langle M_0 \rangle_T} \frac{\langle \cos^2(kx - \omega t) \rangle_T}{\langle B_0^2 \rangle_T}$$

$$= \frac{2}{B_0} \frac{1}{M_0}$$

(d)
$$\vec{E}_{ref}$$
 travels in $-x$ direction. We know \vec{E}_{ref} = \vec{E}_{ref} , $0 \cos(kx+\omega t)$ | \vec{E}_{ref} = $\vec{E}_{i,0} \cos(kx-\omega t)$ + $\vec{E}_{r,0} \cos(kx+\omega t)$ | \vec{E}_{tot} = $\vec{E}_{i,0} \cos(kx-\omega t)$ + $\vec{E}_{r,0} \cos(kx+\omega t)$ | We know \vec{E}_{tot} parallel to conductor, since \vec{E}_{rot} must be perpendicular to \hat{x} . So at \vec{E}_{tot} ($x=0$) = $\vec{E}_{i,0} \cos(-\omega t)$ + $\vec{E}_{r,0} \cos(\omega t)$ = 0 $\vec{E}_{r,0}$ = $-\vec{E}_{i,0}$ = $-\vec{E}_{i,0}$ = $-\vec{E}_{i,0}$

= CB02

Problem 3. Two monochromatic light waves of different wavelengths λ_1 and λ_2 in vacuum are both incident at angle θ_0 on rectangular prism of Material X. Material X is dispersive, and its index of refraction depends on the vacuum wavelength λ as

$$n(\lambda) = \frac{3}{2} + \frac{X}{\lambda^2},\tag{2}$$

with X > 0 an *unknown* positive constant. Because n depends on λ , the two waves are refracted at different angles θ_1 and θ_2 in Material X, with $\theta_2 > \theta_1$.

Vacuum

(6) (a) Use Snell's law to find the values of the index of refraction $n_1 = n(\lambda_1)$ and $n_2 = n(\lambda_2)$ in terms of the incident and refracted angles.

For the two wavelengths, λ_1 and λ_2 :

- (4) (b) Which wavelength is larger?
- (4) (c) Which wavelength of light travels faster in Material X?
- (4) (d) In the figure above, which of the wavelengths, if any, will undergo total internal reflection at the bottom surface of the prism?

(a) Snell's law:

$$\sin \theta_0 = n_1 \sin \theta_1 \rightarrow n_1 = \frac{\sin \theta_0}{\sin \theta_1}$$

 $\sin \theta_0 = n_2 \sin \theta_2 \rightarrow n_2 = \frac{\sin \theta_0}{\sin \theta_2}$

(b) Since
$$\Theta_{2} = \Theta_{1}$$
, $N_{1} > N_{2}$
Since $N \sim \frac{1}{\lambda^{2}}$, larger $N \sim \text{smaller } \lambda$
 $= \gamma \left[\lambda_{2} \ge \lambda_{1} \right]$

$$(C) \quad N_1 > N_2$$

$$V_1 = \frac{C}{N_1} \quad , \quad V_2 = \frac{C}{N_2}$$
so
$$V_1 < V_2$$

(d) Apply Snell's law to bottom surface:

$$n_1 \sin \Theta_1 = \sin \Theta_1$$

 $n_2 \sin \Theta_2 = \sin \Theta_2$

But from part (a), $n_1 \sin \theta_1 = \sin \theta_0$ $n_2 \sin \theta_2 = \sin \theta_0$

so outgoing angle for both rays is Θ < $\frac{T}{Z}$.

No T.I.R. for either wavelength

