Physics IC UCLA Fall 2018 Sivaramakrishnan

Midterm Exam

Show your work! Answers are given credit according to justification provided.

Problem 1: [25 points]

a) [5pts] Use Ampere's law to calculate the magnitude of the magnetic field a perpendicular distance r from an infinitely-long straight wire carrying current I .

are placed at three corners corners the following diagram, in which parallel infinitely-long straight wires current I out of the corners of a square of side length l . The wires opposite one another carry field Int I out of the page, and the third carries current 2I into the page. Find the magnetic at point P_1 , the center of the square.

". Carrels!

Problem 2: [25 points] Name

a) [5 pts] Suppose a cylindrical wire of radius R has uniform current density with total current I . Find the magnitude of the magnetic field at a perpendicular distance $r < R$ from the center of the wire. *I*. Find the magnitude of the magnetic field at a perpendicular distance $r < R$ from the center of the wire.
b) [10 pts] Now suppose the cylindrical wire has an off-center cylindrical hole as pictured below that all the s

below, but the current density in the remaining shaded region remains the same as in part a).
The hole has diameter B and li The hole has diameter R and lies tangent to the circle. What is the magnitude of the magnetic field at point P_1 , the center of the circle?

c) $[10 \text{ pts}]$ What is the magnitude of the field at point P_2 , the center of the hole?

$$
\frac{1}{100}
$$

 $\int \vec{B} \cdot d\vec{l} = \mu_0 I_{enc}$

For solid : B = Mor I'

$$
let \r = \frac{R}{2}, \text{ and } T' = \frac{L}{2}
$$

 \bigcap

$$
\therefore B = \frac{\mu_0}{2\pi R^2} \cdot \frac{R}{2} \cdot \frac{I}{2}
$$

$$
B = \frac{\mu_0 I}{8\pi R} \qquad \downarrow
$$

I'ere is > current is halved ... cut in half

Problem 3: $[25$ points]

 I aget

Bine Shou A infinite straight wire carries current I . A rectangular loop is placed a distance τ from the wire. In this problem, ignore any self-inductance effects (if you don't know what these are, don't worry, we haven't learnt this yet).

a) [10 pts] Suppose that $a_1 = a_2 = a$. What is the magnetic flux through the loop?

b) [10 pts] Suppose now that the current in the straight wire is time dependent, $I = I(t)$ I_0e^{-bt} , where $b > 0$. If the loop has resistance R, what current will flow through the loop and in which direction?

c) [5 pts] In addition to the time-dependence of $I(t)$ above, suppose also that the loop's length changes in time according to $a_1(t) = af(t)$. What is the sign of $f'(t)$ (i.e. should the loop should grow or shrink) so that there is no induced current? Justify with a brief explanation or by finding $f'(t)$.

a) B of infinite curve:
$$
\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{enc}
$$

\n
$$
B = \frac{\mu_0 I}{2 \pi r} = \int \vec{B} \cdot d\vec{A} = a \int_{r_0}^{r_0} \vec{B} \cdot d\vec{r} = a \int_{r_0}^{r_0} \frac{\mu_0 I}{2 \pi r'} dr' = \frac{a \mu_0 I}{2 \pi} \ln{r'}
$$
\n
$$
= \frac{a \mu_0 I}{2 \pi} \left(\ln{(r+a)} - \ln{(r)} \right) = \left[\frac{\ln{(\frac{r+a}{r})} \cdot \frac{a \mu_0 I}{2 \pi}}{2 \pi} \right]
$$
\nb) $\mathcal{E} = \frac{d \Phi_B}{dt} = -\frac{d}{dt} \left(\ln{(\frac{r+a}{r})} \cdot \frac{a \mu_0 I_{oc}e^{-bt}}{2 \pi} \right) = -\frac{1}{\ln{(\frac{r+a}{r})}} \cdot \frac{a \mu_0 I_{oc}}{2 \pi} \cdot (-be^{t})$ \nis smaller

\n
$$
= \ln{(\frac{r+a}{r})} \cdot \frac{a \frac{b \mu_0 I_{oc}}{2 \pi} \cdot e^{-bt}}{2 \pi}
$$
\nis smaller

\n
$$
\frac{d}{dt} = \ln{(\frac{r+a}{r})} \cdot \frac{a \frac{b \mu_0 I_{oc}}{2 \pi} \cdot e^{-bt}}{2 \pi}
$$
\ndivled us the

Name

c) Want flux to stay constant, since eut is
induced only when there's a change in Flux. Since current decreases with Flux constant.

I think $f'(t)$ should be regative the

Problem 4: [25 points]

 \equiv

 R

The rectangular loop of wire with length *l* and width *w* pictured below is rotating about its center in a constant magnetic field $\vec{B} = -B\hat{y}$. The angular speed of rotation is fixed by hand to be and the loop is oriented at $\theta = 0$, in the $x = x$ phase $C = -By$. The angular speed of rotation is fixed by hand
oriented at $\theta = 0$, in the $x = x$ phase M is aligned with the x-axis as pictured. At $t = 0$, the loop is problem: $\theta = 0$, in the $x - z$ plane. We will only consider half a revolution of the wire in this problem: $\theta = 0$ to $\theta = \pi$.

- a) $[10 \text{ pts}]$ As a function of time t, what is the induced emf in the circuit?
- (b) [5 pts] Now suppose the wire has resistance R . What is the net force acting on the wire as a result of the external magnetic field as a function of t ?
- ζ c) [10 pts] What is the net torque about the axis of rotation? To specify the direction, recall that $\vec{\tau} = \vec{r} \times \vec{F}$, where \vec{r} points from the axis of rotation to the point at which \vec{F} acts.

a)
$$
E = -\frac{dE}{dt} = -\frac{d}{dt}B(A(t))
$$

\n
$$
+ \sec \theta = 0
$$

\n
$$
+ \cos \theta = 0
$$

\n
$$
+
$$