Physics 1C UCLA Fall 2018 Sivaramakrishnan

Midterm Exam

Problem 1: 25

Problem 2:

Problem 3: 2

Problem 4: 17

Total: _____/100

Show your work! Answers are given credit according to justification provided.

a) [5pts] Use Ampere's law to calculate the magnitude of the magnetic field a perpendicular distance r distance r from an infinitely-long straight wire carrying current I.

b) [10 pts] Now consider the following diagram, in which parallel infinitely-long straight wires are placed. are placed at three corners of a square of side length l. The wires opposite one another carry current I out of the page, and the third carries current 2I into the page. Find the magnetic field at point P_1 , the center of the square.

 \bigcirc c) [10 pts] Find the magnetic field at point P_2 , the fourth corner of the square.

c)
$$\frac{B_3 \int B_2}{P_2}$$

$$\frac{B_1}{P_2} = \vec{O} \bigcirc P_2$$

$$\left| \overline{B}_3 + \overline{B}_2 \right| = \left| \overline{2 \left(\frac{M_0 I}{2 \pi \ell} \right)^2} \right| = \frac{\sqrt{2} M_0 I}{2 \pi \ell}$$

Problem 2: [25 points]

Name

a) [5 pts] Suppose a cylindrical wire of radius R has uniform current density with total current of the magnitude of the magnetic field at a perpendicular distance r < R from the center of the wire.

b) [10 pts] Now suppose the cylindrical wire has an off-center cylindrical hole as pictured below, but the current density in the remaining shaded region remains the same as in part a). The hole has diameter R and lies tangent to the circle. What is the magnitude of the magnetic field at point P_1 , the center of the circle?

c) [10 pts] What is the magnitude of the field at point P_2 , the center of the hole?

a)
$$\beta B \cdot d\vec{l} = \mu_0 I \text{ enc}$$

$$B(2\Pi r) = \mu_0 \cdot \frac{\Pi r^2}{\Pi R^2} I \rightarrow B = \frac{\mu_0 r^2 I}{2\Pi r R}$$

$$|B| = \frac{\mu_0 r I}{2\Pi R^2}$$

b) $\int B \cdot d\vec{l} = \mu_0 I \cdot enc$ $B(2\pi R) = \mu_0 \cdot \frac{T(R)^2}{TR^2} I = \mu_0 \cdot \frac{I}{4}$ $|B| = \frac{\mu_0 I}{4\pi R}$

For solid wive
$$n/reR$$
: $B = \frac{\mu_0 \Gamma I'}{2\pi R^2}$
let $\Gamma = \frac{R}{2}$, and $I' = \frac{I}{2}$

$$B = \frac{\mu_0}{2\pi R^2} \cdot \frac{R}{Z} \cdot \frac{I}{Z}$$

$$B = \frac{\mu_0 I}{8\pi R}$$

Problem 3: [25 points]

Name

A infinite straight wire carries current I. A rectangular loop is placed a distance τ from the wire. In this problem, ignore any self-inductance effects (if you don't know what these are, don't worry, we haven't learnt this yet).

- a) [10 pts] Suppose that $a_1 = a_2 = a$. What is the magnetic flux through the loop?
- b) [10 pts] Suppose now that the current in the straight wire is time dependent, I = I(t) = I_0e^{-bt} , where b>0. If the loop has resistance R, what current will flow through the loop and in which direction?
- c) [5 pts] In addition to the time-dependence of I(t) above, suppose also that the loop's length changes in time according to $a_1(t) = af(t)$. What is the sign of f'(t) (i.e. should the loop should grow or shrink) so that there is no induced current? Justify with a brief explanation or by finding f'(t).

a) B of intivite wive:
$$\oint \vec{B} \cdot d\vec{l} = \mu_0 \vec{I}$$

$$\vec{B} = \frac{\mu_0 \vec{I}}{2\pi r}$$

$$\vec{P}_B = \int \vec{B} \cdot d\vec{A} = \alpha \int \vec{B} \cdot d\vec{r} = \alpha \int \frac{\mu_0 \vec{I}}{2\pi r'} dr' = \frac{\alpha \mu_0 \vec{I}}{2\pi} \ln r' |_{\vec{I}}$$

$$= \frac{\alpha \mu_0 \vec{I}}{2\pi} \left(\ln(r + \alpha) - \ln(r) \right) = \left[\ln\left(\frac{r + \alpha}{r}\right) \cdot \frac{\alpha \mu_0 \vec{I}}{2\pi} \right]$$
b) $\vec{E} = \frac{d\vec{P}_B}{dt} = \frac{d}{dt} \left(\ln\left(\frac{r + \alpha}{r}\right) \cdot \frac{\alpha \mu_0 \vec{I}}{2\pi} \cdot \frac{a \mu_0 \vec{I}}{r} \cdot \frac{a \cdot \frac{a \mu_0 \vec{I}}{r$

Want flux to stay constant, since ent is induced only when there's a change in flux. Since current decreases with time, the loop should shrink to keep the flux constant.

I think f'(t) should be regetive.

Problem 4: [25 points]

The rectangular loop of wire with length l and width w pictured below is rotating about its center in a constant magnetic field $\vec{B} = -B\hat{y}$. The angular speed of rotation is fixed by hand to be $\omega \frac{rad}{s}$ and the axis of rotation is aligned with the x-axis as pictured. At t=0, the loop is oriented at $\theta=0$, in the x-z plane. We will only consider half a revolution of the wire in this problem: $\theta=0$ to $\theta=\pi$.

- a) [10 pts] As a function of time t, what is the induced emf in the circuit?
- \searrow b) [5 pts] Now suppose the wire has resistance R. What is the net force acting on the wire as a result of the external magnetic field as a function of t?
- c) [10 pts] What is the net torque about the axis of rotation? To specify the direction, recall that $\vec{\tau} = \vec{r} \times \vec{F}$, where \vec{r} points from the axis of rotation to the point at which \vec{F} acts.

a)
$$\varepsilon = -\frac{d\Phi}{dt} = -\frac{d}{dt}B(A(t))$$

see above = $-BA'(t) = Blysint$?

For eq. for A = $-BA'(t) = Blysint$?

b)
$$EF = [ON]$$
, since it's a closed loop closed loop $= \frac{-BA'(t)}{R}$, where $(90^{\circ} - 0)$ = ...