Physics 1C UCLA Fall 2018 Sivaramakrishnan

Midterm Exam

Problem 1: \(\frac{\lambda}{\lambda}\)

Problem 2: 16

Problem 3: <u>25</u>

Problem 4: 2

Total: <u>\$0</u>/100

Show your work! Answers are given credit according to justification provided.

Problem 1: [25 points]

5

a) [5pts] Use Ampere's law to calculate the magnitude of the magnetic field a perpendicular distance r from an infinitely-long straight wire carrying current I.

b) [10 pts] Now consider the following diagram, in which parallel infinitely-long straight wires are placed at three corners of a square of side length l. The wires opposite one another carry current I out of the page, and the third carries current 2I into the page. Find the magnetic field at point P_1 , the center of the square.

3

c) [10 pts] Find the magnetic field at point P_2 , the fourth corner of the square.

$$\vec{B}_{p_1} = \vec{B}_1$$
 $\left| \vec{B}_{p_1} \right| = \frac{M_c \vec{I}}{2\pi \sqrt{\xi^2 + \frac{\zeta^2}{4}}} \rightarrow \left| \vec{B}_{p_1} \right| = \frac{M_c \vec{I}}{\pi \ell} \hat{I} - \frac{M_c \vec{I}}{\pi \ell} \hat{I}$

3 c) Again, By and By concect: Thus,
$$\vec{B}_{p2} = \vec{E}$$
,

Problem 2: [25 points]

Name

- a) [5 pts] Suppose a cylindrical wire of radius R has uniform current density with total current I. Find the magnitude of the magnetic field at a perpendicular distance r < R from the center of the wire.
- b) [10 pts] Now suppose the cylindrical wire has an off-center cylindrical hole as pictured below, but the current density in the remaining shaded region remains the same as in part a). The hole has diameter R and lies tangent to the circle. What is the magnitude of the magnetic field at point P_1 , the center of the circle?

c) [10 pts] What is the magnitude of the field at point P_2 , the center of the hole?

Name

B: MOI

Problem 3: [25 points]

Name

A infinite straight wire carries current I. A rectangular loop is placed a distance r from the wire. In this problem, ignore any self-inductance effects (if you don't know what these are, don't worry, we haven't learnt this yet).

- a) [10 pts] Suppose that $a_1 = a_2 = a$. What is the magnetic flux through the loop?
- b) [10 pts] Suppose now that the current in the straight wire is time dependent, $I = I(t) = I_0 e^{-bt}$, where b > 0. If the loop has resistance R, what current will flow through the loop and in which direction?
- c) [5 pts] In addition to the time-dependence of I(t) above, suppose also that the loop's length changes in time according to $a_1(t) = af(t)$. What is the sign of f'(t) (i.e. should the loop should grow or shrink) so that there is no induced current? Justify with a brief explanation for by finding f'(t).

$$\begin{array}{lll}
\boxed{a} & B = \frac{M_{0}I}{2\pi r} \\
\boxed{\Phi}_{15} = \begin{bmatrix} \overrightarrow{B} \cdot d\overrightarrow{A} \\
\boxed{\Phi}_{15} & \frac{M_{0}I}{2\pi r} \cdot a dr
\end{array}$$

$$= \frac{M_{0}Ia}{2\pi I} \int_{\Gamma}^{\Gamma + a} \frac{1}{r} dr$$

$$\boxed{\Phi}_{0} = \frac{M_{0}Ia}{2\pi I} |n| \frac{\Gamma + a}{r} |$$

b)
$$I(t) = I_0 e^{-bt}$$

$$\frac{dI}{dt} = I_0 - be^{-bt}$$

$$\frac{d\Phi_b}{dt} = \frac{M_0 d}{dt} \ln \left| \frac{r_1 q}{r} \right| \cdot \frac{dI}{olt}$$

$$E = -\frac{dE_B = + \frac{M_0 a}{2\pi} \ln \left| \frac{r+a}{r} \right| I_c \text{ be}}{dt} = \frac{M_0 a I_0 \text{ be}^{-bt}}{2\pi R} \ln \left| \frac{r+a}{r} \right| V$$
in the clockwise direction

decreasing due to decreasing I chargin wire, so to counteract this, we need f(t) to increase, which increases area, and therefore increases flux. Thus, de 0, and \$=0.

Problem 4: [25 points]

Name

The rectangular loop of wire with length l and width w pictured below is rotating about its center in a constant magnetic field $\vec{B} = -B\hat{y}$. The angular speed of rotation is fixed by hand to be $\omega \frac{rad}{s}$ and the axis of rotation is aligned with the x-axis as pictured. At t=0, the loop is oriented at $\theta=0$, in the x-z plane. We will only consider half a revolution of the wire in this problem: $\theta=0$ to $\theta=\pi$.

- a) [10 pts] As a function of time t, what is the induced emf in the circuit?
- b) [5 pts] Now suppose the wire has resistance R. What is the net force acting on the wire as a result of the external magnetic field as a function of t?
- c) [10 pts] What is the net torque about the axis of rotation? To specify the direction, recall that $\vec{\tau} = \vec{r} \times \vec{F}$, where \vec{r} points from the axis of rotation to the point at which \vec{F} acts.

Name

Aa) $\Phi_B = Bwl\cos 0$ $d\Phi_b = Bwl\sin 0$ $d\Phi_b = Bwl\sin$