
Physics 1B, Spring 2020, Midterm 2

Instructions.

1. Complete this exam packet, and submit it to Gradescope before the end of the exam period.

2. Make sure all final work is in only the spaces provided, and make sure to upload a document of exactly the
length of this packet.

3. If you are using a smartphone to generate a scan, please use a scanning app such as Adobe Scan to quickly
generate an optimized PDF document.

4. There is extra space at the end of the packet in case the space below each problem isn’t su�cient, but if you
use that extra space, make sure to indicate that extra work is contained there when you show your work for
a problem.

5. You are allowed to use the CCLE course page, the course textbook (OpenStax), and your notes, but you are
not permitted to use any other internet resources.

6. A calculator (whatever type desired) is allowed.

7. You may not communicate about the contents of this exam with anyone during the exam period.

8. You may not logon to Campuswire during the exam period.

9. Josh and the TAs will not be free to answer clarifying questions about the exam during the exam
period. If you believe there is an ambiguity, feel free to make a note of it to yourself and we will attempt to
address it post-exam, but otherwise do your best to answer the questions based on what they say.

10. Violations of instructions pertaining to what you are not allowed to do during the exam will be considered
cheating and will be reported to the Dean of Students.
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1. Treacherous Triangle Trickery. Consider a charge distribution consisting of an equilateral triangle with a
point charge q fixed at each of its vertices. Let d be the distance between the center of the triangle and each
vertex, let the triangle’s center be at the origin, and let one of its vertices lie on the x -axis at the point x = −d .

1.1. Compute the electric field at the center of the triangle by explicitly computing the sum of the electric fields
due the charges at each vertex.

1.2. Let V (x, y) be the electric potential as a function of position. Compute an expression for V (x, y), and try to
simplify it if possible.
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1.3. If a point charge Q is placed at rest at the origin, will it remain at rest? Justify using electric potential and
symbolic computation.
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1.4. Sketch the graph of V (x, 0) versus x .

1.5. Compute the Taylor expansion of V (x, 0) about x = 0 up to the term of order x2.
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1.6. If a point charge Q is placed at the origin and then given a su�ciently small kick in the x -direction, will it
remain in the vicinity fo the origin forever? Does it depend on the sign of Q ? Does it matter if the kick is to the
left or right? Justify all answers carefully.
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1.7. If there is a case where the charge Q will oscillates under a small push in the x -direction, determine the period
of small oscillations if the charge in the center has mass m. If there is not such a case of oscillatory motion, explain
how you know this.

2. Auditory Airplane Inference. An airplane is flying past you some distance away at a constant speed in a
straight line, and you use an app on your phone to record the sound it generates which has a constant emission
frequency. The app outputs the following graph representing the pressure as a function of time in the air sur-
rounding the phone. The graph displays 2 seconds of sensing data with the middle of the graph representing the
moment of closest approach of the plane. Compute how fast the plane is going as accurately as you can, and
clearly explain and show the logic and any algebra behind your computation.
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3. True or False questions. Determine whether or not each of the following statements is true. If a statement is
true, prove it. If the statement is false, provide a counterexample and explain how it constitutes a counterexample.
Diagrams can be useful in explaining such things.

3.1. If the electric potential in a certain region of space is constant, then the charge enclosed by any closed surface
completely contained within that region is zero.

3.2. A sphere of radius R is centered at the origin. A total charge Q is uniformly distributed throughout its
interior. A ball of radius R/2 centered at the the origin is carved out and discarded, leaving behind an empty
cavity. The electric potential has the same value at every point inside the cavity.
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3.3. A sphere of radius R is centered at the origin. A total charge Q uniformly distributed throughout its interior.
A ball of radius R/2 centered at the point (x, y, z ) = (0, 0,R/4) is carved out and discarded, leaving behind an
empty cavity. The electric potential has the same value at every point inside the cavity.
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1. Treacherous Triangle Trickery. Consider a charge distribution consisting of an equilateral triangle with a
point charge q fixed at each of its vertices. Let d be the distance between the center of the triangle and each
vertex, let the triangle’s center be at the origin, and let one of its vertices lie on the x -axis at the point x = −d .

1.1. Compute the electric field at the center of the triangle by explicitly computing the sum of the electric fields
due the charges at each vertex.

This can be done by drawing a picture and finding components using plane geometry or just by using the
expression for the electric field of a point chargea + symbolic computation. Let’s try the latter way, noticing
that the the contribution for each charge has a factor kq that can be factored out of the whole expression, and
noting that since all charges are in the x -y plane, we can e�ectively treat this as a 2-dimensional problem and
ignore the z -direction:

E(0, 0) = kq

[
(0 − d/2)x̂ + (0 − d

√
3/2)ŷ

|(0 − d/2)x̂ + (0 − d
√
3/2)ŷ|3
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√
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3/2)ŷ

)
(2)

= 0 (3)

aThe field at point r of point charge q at location r′ is kq (r − r′)/|r − r′ |3

1.2. Let V (x, y) be the electric potential as a function of position. Compute an expression for V (x, y), and try to
simplify it if possible.

We use the expression for the electric potential due to a point chargea and add the potential due to all point
charges together noting that the common factor kq can be factored out;

V (x, y) = kq

[
1
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3/2)ŷ|

+
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+
1
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]
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= kq
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aThe electric potential at point r of point charge q at location r′ is kq/|r − r′ |

1.3. If a point charge Q is placed at rest at the origin, will it remain at rest? Justify using electric potential and
symbolic computation.

The charge at the origin will stay at rest provided the gradient of the potential at the origin is zero because
in that case, the electric field at the origin will be zero, and thus the force it feels at the origin will be zero.
We need to take the gradient, plug in (x, y) = (0, 0), and see if we get zero. Taking the gradient gives

∇V (x, y) = −kq

[
(x − d/2)x̂ + (y − d

√
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√
3/2)2]3/2

+
(x − d/2)x̂ + (y + d

√
3/2)ŷ
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]
(6)
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So at the origin we get

∇V (0, 0) = −kq

[
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So the charge will stay at the origin if placed there at rest.

1.4. Sketch the graph of V (x, 0) versus x .

Before we sketch the graph, let’s make some physical observations that will help draw it. Since the charge
distribution is bounded, we expect that if we go really far away, the potential will drop to zero. Since the
charges are all of the same sign, the potential will be positive everywhere if q > 0 and negative everywhere if
q < 0. Let’s take q > 0 for concreteness, and note that for q < 0 the graph is just flipped. Since there is a point
charge at x = −d , we expect there to be an asymptote there where the potential goes to infinity. The part that’s
harder to determine is what happens for positive values of x roughly between 0 and d . We know that close
to the charge at x = −d , the potential is big, but then does it decreasing from there on out to infinity, or is
there perhaps a bump somewhere when we get close to the other vertices. I’d expect that there will be a small
bump, but the only way to be sure is to check the value of the derivative with respect to x in the vicinity of
x = d/2 and see if there’s a local maximum somewhere around there. This problem won’t be graded in such
detail that it’s crucial to get this feature correct as long as the graph has a feature indicating that the other
two point charges a�ect the field and make it drop o� less slowly, but it turns out that there is in fact a bump
in that vicinity:

1.5. Compute the Taylor expansion of V (x, 0) about x = 0 up to the term of order x2.

To compute the Taylor series, we need the first and second derivative ofV (x, 0) with respect to x evaluated at
x = 0. The potential itself is

V (x, 0) = kq
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√
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√
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 (10)

= kq

[
2
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The first derivative is

d
dx
V (x, 0) = −kq

[
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[x2 − dx + d 2]3/2
+
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]
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and the second derivative is

d 2

dx2
V (x, 0) = −kq

[
2(x2 − dx + d 2) − (3/2)(2x − d )2

(x2 − dx + d 2)5/2
−

2(x + d )2

[(x + d )2]5/2

]
(13)

These expressions look complicated (and frankly they are a pain to compute by hand), but when you evaluate
them at x = 0, a lot of stu� simplifies, and you get

V (0, 0) =
3kq
d
,

d
dx
V (x, 0)

�����
x=0

= 0,
d 2

dx2
V (x, 0)

�����
x=0

=
3
2
kq

d 3
(14)

So the desired Taylor expansion or order x2 is

V (x, 0) =
3kq
d
+
3
4
kq

d 3
x2 + · · · (15)

This shows that near the origin, where the higher-order terms will be negligible, the potential looks like a
parabola, so there’s a little “bowl” at the origin if q > 0 and a little hill at the origin if q < 0.

1.6. If a point charge Q is placed at the origin and then given a su�ciently small kick in the x -direction, will it
remain in the vicinity fo the origin forever? Does it depend on the sign of Q ? Does it matter if the kick is to the
left or right? Justify all answers carefully.

In the vicinity of the origin, the potential is either concave up if q > 0 or concave down if q < 0 as we can
see from its Taylor expansion. Therefore, if q > 0, a positive charge Q that’s given a small kick will remain
near the origin, oscillating around the local minimum of the potential, and if q < 0, a negative charge Q that’s
given a kick will remain near the origin, oscillating around the local maximum of the potential. It doesn’t
matter if the charge is kicked to the left or to the right – all that matters is that the charge will remain near
the origin oscillating provided its charge Q has the same sign as q , and it’s given a su�ciently small kick.

1.7. If there is a case where the charge Q will oscillates under a small push in the x -direction, determine the period
of small oscillations if the charge in the center has mass m. If there is not such a case of oscillatory motion, explain
how you know this.

Using the Taylor expansion, the force on the charge in the x -direction hear the origin for small x is

Fx (x, 0) = QEx (x, 0) = −Q
d
dx
V (x, 0) = −

3
2
kQq

d 3
x (16)

So by Newton’s Second Law Fx = m Üx , we find that

Üx = −
3
2
kQq

md 3
x (17)

This is the harmonic oscillator equation Üx = −ω2x with ω =
√

3
2
kQq
md 3 which implies a period

T = 2π

√
2
3
md 3

kQq
(18)
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2. Auditory Airplane Inference. An airplane is flying past you some distance away at a constant speed in a
straight line, and you use an app on your phone to record the sound it generates which has a constant emission
frequency. The app outputs the following graph representing the pressure as a function of time in the air sur-
rounding the phone. The graph displays 2 seconds of sensing data with the middle of the graph representing the
moment of closest approach of the plane. Compute how fast the plane is going as accurately as you can, and
clearly explain and show the logic and any algebra behind your computation.

We saw in the problem sets that even if the source of sound is not moving along the line joining the source
to the observer, the asymptotic relationship between the observed and emitted frequencies is the same as it
would be if the source were moving along that line. So when the plane is far from the observer, approaching,
the observed and emitted frequencies are related by

fo,toward ≈
v

v − vs
fs (19)

while when the plane is far from the observer, moving away, the observed and emitted frequencies are related
by

fo,away ≈
v

v + vs
fs (20)

This is a system of two equations in two unknowns, vs, fs , and we therefore can solve for both. Since we care
about vs , the speed of the source, we eliminate fs by dividing the equations by each other and then solving
for vs . The result is

vs =
fo,toward − fo,away
fo,toward + fo,away

v (21)

If we now look at the waveform given in the problem statement, we can approximate fo,toward and fo,away by,
for example, looking at roughly the first half-second in the diagram when the plane is a bit on the far side
moving toward, and noting that there are about 22 cycles in that first half second which gives a frequency of
44Hz. On the other hand, in the last half second there are about 6 full cycles giving a frequency of ∼ 12Hz.
Also the speed of sound in air is 340m/s, so we get the following approximation for the speed of the plane:

vs ≈
44Hz − 12Hz
44Hz + 12Hz

(340m/s) ≈ 194m/s (22)

Note that this is an approximation, and one could get answers that are something like ±25% di�erent than this
one if one had counted the cycles slightly di�erently, which is fine. The cool thing is that this is even possible
– simply by listening to something move by, you can estimate its speed using the doppler e�ect, even without
knowing the frequency at which it’s emitting sound!
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3. True or False questions. Determine whether or not each of the following statements is true. If a statement is
true, prove it. If the statement is false, provide a counterexample and explain how it constitutes a counterexample.
Diagrams can be useful in explaining such things.

3.1. If the electric potential in a certain region of space is constant, then the charge enclosed by any closed surface
completely contained within that region is zero.

True. If the electric potential is constant throughout a region, then since E − −∇V , the electric field is zero
throughout that region. It follows that the flux

∫
E · n̂dA will be zero for any closed surface contained within

the region, and by Gauss’s Law, this means that the charge enclosed by the closed surface is zero.

3.2. A sphere of radius R is centered at the origin. A total charge Q is uniformly distributed throughout its
interior. A ball of radius R/2 centered at the the origin is carved out and discarded, leaving behind an empty
cavity. The electric potential has the same value at every point inside the cavity.

True. By spherical symmetry, the electric field of the distribution must point either radially outward or radially
inward everywhere. Now suppose we apply Gauss’s Law to a Gaussian sphere of radius r < R/2 centered at
the origin. The flux is, on one hand E(r )(4πr 2 where E(r )n̂ is the field at radius r , and on the other hand it’s
zero since no charge is enclosed by the surface. It follows that E(r ) = 0, so the field is zero everywhere within
the cavity. It follows that for any two points A and B in the cavity the di�erence in potential between them is
zero;

VB −VA = −
∫ B

A
E · dℓ = 0 (23)

Thus potential has the same value at every two such points.

3.3. A sphere of radius R is centered at the origin. A total charge Q uniformly distributed throughout its interior.
A ball of radius R/2 centered at the point (x, y, z ) = (0, 0,R/4) is carved out and discarded, leaving behind an
empty cavity. The electric potential has the same value at every point inside the cavity.

False. There is a trick to this problem. If you were to take the charge distribution consisting of the original
ball without the cavity cut out, and then if you were to add to it a oppositely-charged ball having the same
magnitude of its charge density, then this is equivalent as far as the potential is concerned to the ball with
the cavity cut out because the opposite charges would cancel giving net zero charge in the region where they
overlap. Now suppose that you consider two points A and B along the shared diameter line of the two balls,
one in the center of the oppositely-charged (red) ball and one at its edge. Both of these points are R/4 from
the center of the big ball, but they are at di�erent points in the oppositely charged ball, so the potential due to
the big ball will be the same at these points, but not due to the small ball, and therefore these are two points
where the total potential due to the superposition of both balls will be di�erent.
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