## PHYSICS 1B

### MIDTERM 2

Spring, 2017

Dr. Coroniti

There are 100 points on the exam, and you have 50 minutes. To receive full credit, show all you work and reasoning. No credit will be given for answers that simply "appear". The exam is closed notes and closed book. You do not need calculators, so please put them, and all cell phones, away. If you need more space, use the backside of the page.

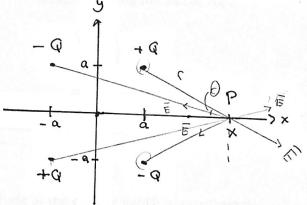
| Dennis van Eo                           | A Section of the Sect |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Your Full Name - Printed Clearly        | Your Normal Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 004231752                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Your Student ID Number                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <u>Problem</u>                          | <u>Score</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                         | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| delications of the first open 1 appears |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2                                       | _15_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3                                       | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4                                       | _22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                         | $\forall \exists$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

## **FORMULAE**

1. 
$$\frac{1}{(1+x)^{1/2}} \approx 1 - \frac{x}{2}$$
;  $x \ll 1$ 
2.  $\frac{1}{(1\pm x)^{3/2}} \approx 1 \mp \frac{3}{2}x$ 
3.  $(1+x)^{1/2} \approx 1 + \frac{x}{2} - \frac{x^2}{8}$ 
4.  $\int \frac{x dx}{(x^2 + a^2)^{3/2}} = \frac{1}{(x^2 + a^2)^{\frac{1}{2}}}$ 
5.  $\int \frac{x dx}{(x^2 + a^2)^{1/2}} = (x^2 + a^2)^{1/2}$ 
6.  $\underline{E} = \frac{Q r}{4\pi\epsilon_0 r^2}$ 
7.  $\underline{dE} = \frac{dQ \dot{r}}{4\pi\epsilon_0 r^2}$ 
8.  $\oiint \underline{E} \cdot \underline{dA} = \frac{Q}{\epsilon_0}$ 
9.  $dV = -\underline{E} \cdot \underline{dr}$ 
10.  $dV = \frac{dQ}{4\pi\epsilon_0 r}$ 

**Total** 

### (25 Pts)


1. Two positive and two negative point charges with magnitude Q are located at the following (x, y) coordinates as shown:

$$(1) + Q (a, a)$$

$$(4) + Q (-a, -a)$$

(15) a. For the pair of charges at  $x=a,y=\pm a$ , find the direction of the electric field that the charges produce at Point P (x, y = 0), and show that the magnitude of the electric field  $|\underline{E}|$  is

$$\left|\underline{E}\right| = \frac{2Qa}{4\pi\epsilon_0} \frac{1}{[(x-a)^2 + a^2]^{3/2}}$$

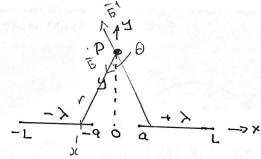


- (5) b. Find the total electric field at Point P that is produced by the four charges.
- (5) c. Show that if  $x \gg a$ , the magnitude of the total electric field is approximately given by

$$\left|\underline{E}\right| \approx \frac{12Qa^2}{4\pi\epsilon_0 x^4}$$

What type of electric field does this represent?

$$\frac{\vec{E} = \vec{E}^{\dagger} + \vec{E}^{-} = \vec{E}^{\dagger} \sin\theta + \vec{E} \sin\theta = \frac{Q}{4\pi\epsilon_{0} r^{2}} \frac{\alpha}{r} + \frac{Q}{4\pi\epsilon_{0} l^{2}} \frac{q}{r} = \frac{2Qq}{4\pi\epsilon_{0} (\alpha \cdot \alpha)^{2} + \alpha^{4}} \frac{2Qq}{4\pi\epsilon_{0} (\alpha \cdot \alpha)^{2}} \frac{2Qq}{4\pi\epsilon_{0} (\alpha \cdot \alpha)^{2}}$$


C. 
$$\frac{2Qq}{4\pi} \left( \frac{1}{(d_1^2 + a^2)^{3/2}} - \frac{1}{(d_2^2 + a^2)^{3/2}} \right) = (\infty + a)^2 = 1 \times 2 + 2a + a^2 + a^2 = 1 \times 2 + 2a + 2a^2 = 1 \times 2 + 2a + 2a^2 = 1 \times 2 + 2a + 2a^2 = 1 \times 2 + 2a^$$

$$=\frac{1}{x^{-2}}\left(\frac{6(a)}{x^{2}}\right)=\left[\frac{12\,Q\,a^{2}}{4\pi\,c_{0}\,x^{4}}\right]$$

(20 Pts)

- 2. A thin rod with a uniform charge per unit length (dQ/dx) of  $+\lambda$  extends along the x-axis from x = a to x = L. A second thin rod with dQ/dx =  $-\lambda$  extends along the x-axis from x = -a to x = -L.
- (15) a. Find the direction of the electric field at the Point P (x = 0, y) that is produced by the charged rods, and show that the magnitude of the electric field is given by

$$\left|\underline{E}\right| = \frac{2\lambda}{4\pi\epsilon_0} \left[ \frac{1}{(y^2 + a^2)^{\frac{1}{2}}} - \frac{1}{(y^2 + L^2)^{\frac{1}{2}}} \right]$$



(5) b. If y >> a, and y >> L, show that the magnitude of the electric field is approximately given by

$$\left|\underline{\underline{E}}\right| \approx \frac{\lambda(L^2 - a^2)}{4\pi\epsilon_0 \, y^3}$$

What type of field does  $|\underline{E}|$  represent? Note that  $\lambda(L^2-a^2)=2\lambda(\frac{L+a}{2})(L-a)$ ; what

quantity does this expression represent?

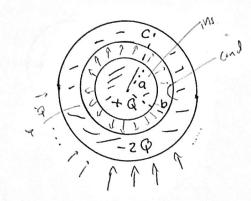
$$\frac{\partial}{\partial x} \left( \frac{1}{1 + \frac{\alpha^2}{2^2}} \right)^{1/2} = \frac{1}{2} \left( \frac{1}{1 + \frac{\lambda^2}{2^2}} \right) \left( \frac{1}{1 + \frac{\lambda$$

$$\frac{3(1+\frac{\alpha^{2}}{j^{2}})^{1/2}}{3(1+\frac{L^{2}}{j^{2}})} = \frac{2}{3(1+\frac{L^{2}}{j^{2}})} = \frac{2}{3(1+\frac{L^{2}}{j^{2}})} = \frac{2}{3(1+\frac{L^{2}}{2j^{2}})} = \frac{2}{3(1+\frac{L$$

# (28 Pts)

- 3. A spherical <u>insulator</u> with radius a carries a total charge of + Q that is uniformly distributed throughout its volume  $(4\pi a^3/3)$ . The insulator sphere is surrounded by a concentric <u>conducting</u> spherical shell with an inner radius b (> a) and an outer radius c (> b) as shown. A total charge of -2Q resides on the conducting shell.
- (6) a. Sketch the electric field lines for this system of charges, and explain the distribution of the -2Q charge on the conducting shell.
- (12) b. Use Gauss's Law to find the electric field in the following regions:

(i) 0 < r < a


(iii) b < r < c

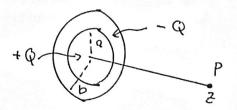
(ii) a < r < b

(iv) c < r

(10) c. Take the zero of the electric potential V (r) to be at r = 0. Show that V (r) at the surface r = c of the conducting shell is given by

$$V(r=c) = -\frac{Q}{4\pi\epsilon_0} \left[ \frac{3}{2a} - \frac{1}{b} \right]$$




b. 
$$i \circ Crca \rightarrow D_{E} = EA = \frac{Q}{E}$$
  $Q(r) = \frac{Q}{5}\pi r^{3}$   $P = \frac{Q}{5}\pi q^{3}$   $Q(r) = \frac{Q}{5}\pi q^$ 

C. 
$$V(t) = \int_{0}^{A} -E\lambda t + \int_{0}^{C} -E\lambda t +$$

(27 Pts)

- 4. A thin circular disk carries a charge of +Q that is uniformly distributed over the radial region 0 < R < a (area =  $\pi a^2$ ), and a charge of -Q that is uniformly distributed over the annular radial range a < R < b (area =  $\pi (b^2 a^2)$ ) as shown. Consider a Point P that is at a distance z along the axis of symmetry of the disk.
- (15) a. Show that the electric potential at P which is produced by the positively charged inner disk is

$$V_{+} = \frac{Q}{2\pi\epsilon_{0}a^{2}} [(z^{2} + a^{2})^{\frac{1}{2}} - z]$$



(7) b. Show that the electric potential at P which is produced by the negatively charged annulus is

$$V_{-} = -\frac{Q}{2\pi\epsilon_{0}(b^{2}-a^{2})} \left[ (z^{2}+b^{2})^{\frac{1}{2}} - (z^{2}+a^{2})^{\frac{1}{2}} \right]$$

(5) c. For z >> a, and z >> b, show that the total electric potential  $V=V_++V_-$  at P is approximately given by

$$V \approx \frac{Qb^2}{16\pi\epsilon_0 z^3}$$

Why does this charge distribution not produce a dipole contribution to the potential?