MT2 Physics 1B W16

17 11	MT	(D.:-	4-1
HIIII	Name	(Prin	rea
T CATE	TAMMENT		

Full Name (Signature)_

Student ID Number

Seat Number

Problem	Grade
1	23 /30
2	9 /30
3	/30
Total	55 /90

Vand + Vand V

- Do not peek at the exam until you are told to begin. You will have approximately 50 minutes to complete the
- Don't spend too much time on any one problem. Solve 'easy' problems first. Go for partial credit!
- HINT: Focus on the concepts involved in the problem, the tools to be used, and the set-up. If you get these right, all that's left is algebra.
- Have Fun!

1) Three spheres of identical radius R (but different, uniform charge densities ρ_1 , ρ_2 and ρ_3) are arranged so that they touch one another as shown in the diagram above. [The diagram at the right is a hint for later].

1a) (10 points) How much work will it take to assemble these spheres into the arrangement shown? [Assume the spheres themselves have already been assembled - that is, neglect the self-energy of each

From outside, point charge Wassemble: $K \left(\frac{9.92}{r_{12}} + \frac{9.92}{r_{13}} + \frac{9.293}{r_{23}} \right) = \frac{9.2 - P_2 + \frac{4}{3} \text{ Tr} R^3}{r_{23}}$ $= K \left(\frac{16p_1 P_2 + \frac{2}{3} R^3}{0 R} + \frac{16p_1 p_3 + \frac{2}{3} R^3}{0 R} + \frac{16p_2 P_3 + \frac{2}{3} R^3}{0 R} \right)$ $= R \left(\frac{16p_1 P_2 + \frac{2}{3} R^3}{0 R} + \frac{2}{3} R^3 + \frac{2}{3} R$ -4775R PIP2+PIP3 + P2P3

• 1b) (10 points) What is the electric potential at the center of the arrangement?

> V= 2 1891 - 5KP4TR2 + 53 KP24TR2 + 53 KP34TIR2 3 = 4 53 KTR (P.+P2+P3)

• 1c) (10 points) What is the electric field at the the center of the arrangement?

 $\begin{array}{ll}
E_{15} = \frac{k_{P}}{2} \frac{k_{P}}{2} \\
E_{1} = \frac{k_{P}}{2} \frac{k_{P}}{2} \frac{k_{P}}{2} \\
= \frac{12k_{P}}{2} \frac{k_{P}}{2} \frac{k_{P}}{2} \frac{k_{P}}{2} \\
= \frac{12k_{P}}{2} \frac{k_{P}}{2} \frac{$

A thin nonconducting rod that carries an electric charge q (uniformly distributed) is • 2a) (10 points) bent to form a circular arc of radius R that subtends an angle ϕ as shown in the diagram on the left. Find the electric field (vector) at point A (located at the center of curvature of the arc).

1 = 0501 - 5ind 5 N=EOSD = 200 dv=dd = 200 dv=sindad

Now consider the diagram shown on the right. Charge is spread over a wedge defined by the angle ϕ between the radial distances R_1 and R_2 (as shown) with an area charge density

$$\sigma(r) = \frac{4Q}{\phi(R_2^4 - R_1^4)} \, r^2$$

where r is the radial distance from the B (located at the center of curvature of the defining arcs). Find the electric field (vector) at B.

dE = Kdy

= $\frac{1}{\sqrt{2}}$ = $\frac{$

Find the electric potential produced by the wedge at point B relative to a point • 2c) (10 points) infinitely-distant from the wedge.

3) A spherical charge distribution of radius R carries a volume charge density

$$\rho(r) = \rho_0 \ (1 - \frac{r^3}{R^3})$$

It is surrounded by a concentric spherical conducting shell that extends from r = R to r = 2R and carries an excess charge Q.

• 3a) (10 points) Find the charge inside a concentric sphere of radius r, for all values of r. Also, find the surface charge densities on the inner and outer surfaces of the conducting shell.

• 3b) (10 points) Find the electric field as a function of the radial distance from the center of the charge distribution (r) for all values of r.

$$(ZR) = \frac{2in}{40}$$

$$E4\pi r^{2} = \frac{2in}{40}$$

$$E4\pi r^{2} = 4\pi \rho_{0} \left(\frac{2}{3} - \frac{6}{6R^{3}}\right)$$

$$E4\pi r^{2} = 4\pi \rho_{0} \left(\frac{2}{3} - \frac{6}{6R^{3}}\right)$$

$$E = \rho_{0} \left(\frac{2}{3} - \frac{4}{6R^{3}}\right)$$

$$E = \frac{2\pi \rho_{0}R^{3}}{680}$$

• 3c) (10 points) If the electric potential within the conductor is given as V_0 , find the potential as a function of the radial distance from the center of the charge distribution (r) for all values of r.

$$V(r) = -\int_{C}^{r} \frac{e^{R^{3}}}{6\epsilon_{0}r^{2}} dr$$

$$= -\int_{C}^{r} \frac{$$