

Problem 1

- (a) A positive charge q_1 and a negative charge $-q_2$ ($\neq -q_1$) are placed along the x-axis separated by a distance. A third charge q_3 is to be placed along the x-axis in order that there is no net electric force on it.
- $(\widehat{\mathbf{A}})$ There is only one point to place q_3 .
- B) There are two points to place q_3 .
- C) It is impossible.
- D) It depends on the sign of q_3 .
- E) None of the above.
- (b) A positive charge Q is fixed at the origin. A second positive charge q is released from rest near
- Q and is free to move. Which of the following about q is true?
- A) Its speed will be greatest just after it is released.
- B) Its acceleration is zero just after it is released.
 C) As it moves farther from Q, its acceleration will keep increasing.
- Q) As it moves farther from Q, its speed will keep decreasing.
- (E) As it moves farther from Q, its speed will keep increasing.
- (c) A sphere of radius R carries a charge Q distributed uniformly throughout its volume. At a distance d from the center, the electric field reach a value equal to half of its maximum. Which of the following is true?
- A) d < R.
- B) d = R.
- C) d > R.
- (D) There are two solutions. One with d < R and one with d > R.
- E) None of the above.
- (d) Under electrostatic conditions, the electric field just outside the surface of a conductor
- A) is always zero.
- B) is always parallel to the conducting surface.
- (C)) is always perpendicular to the conducting surface.
- D) is perpendicular to the surface only if the surface is flat.
- E) can be either parallel or perpendicular to the surface depending on the surface charge.
- (e) A nonconducting sphere is uniformly charged. Which statement about the potential magnitude V is true? The reference is set to infinity.
- (A)V is highest at the center of the sphere.
- $\stackrel{\smile}{\mathrm{B}}$) V is highest at the surface of the sphere.
- C) V at the center of the sphere is zero.
- D) V at the center of the sphere is the same as the V at the surface.
- E) V at the surface is higher than the V at the center.

- (f) A negative charge is moved from point A to B along an equipotential surface.
- A) The negative charge performs work in moving from point A to B.
- B) Work is required to move the charge from point A to B.
- (C) No work is required for the move.
- D) The work done on the charge depends on the path of motion.
- E) The work done on the charge depends on the distance between A and B.
- (g) A parallel plate capacitor with charge Q is connected to a battery. The parallel plates are pulled apart such that the separation is doubled. The capacitor now carries a charge of
- A) 4Q.
- B) 2Q.
- C)Q.
- DQ/2.
- E) Q/4.
- (h) A charged parallel-plate capacitor has round plates and an energy density u_0 . All geometric parameters of the capacitor (plate diameter and separation) are doubled. The energy density becomes:
- A) $16u_0$.
- B) $4u_0$.
- u_0 . $u_0/4$.
 - E) $u_0/16$.

N= 2 7.4 V2 = 1 80 V2

Q = 8.A

- (i) Which of the following statement about Gauss's law is true?
- A) Gauss's law is valid only for symmetric charge distributions such as spheres and cylinders.
- B) If there is no charge inside a Gauss surface, the electric field must be zero on that surface.
- (C) Only charge enclosed by a Gauss surface can produce an electric field on that surface.
- D) For a Gauss surface inside a conductor, the electric field must be zero at all points on that surface.
- E) Electric field through a Gauss surface depends only on the charge enclosed, not on the surface shape.
- (j) A conductor carries a charge of -2 C and has a hollow cavity inside. A positive charge of 1 C is placed inside the cavity. Which statement is true about the charge on the inner (q_{in}) and outer (q_{out}) surfaces of the conductor?
- A) $q_{in} = 0$ C and $q_{out} = -2$ C.
- B) $q_{in} = -2 C$ and $q_{out} = 0 C$.
- C) $q_{in} = -2$ C and $q_{out} = +2$ C.
- D) $q_{in} = -1$ C and $q_{out} = +1$ C.
- (E) $q_{in} = -1$ C and $q_{out} = -1$ C.

Problem 2

- (a) A nonconducting line is bent into a semicircular arc (characterized by θ) with radius R. A charge Q is distributed uniformly on it. We set the reference point to infinity. Find the potential at the center when (i) $\theta = 2\pi$ (i.e. a circle), (ii) $\theta = \pi$ (i.e. the arc of a half circle), (iii) $\theta = \pi/3$.
- (b) We now bend it into a circle $(\theta = 2\pi)$ and charge it with different nonuniform densities (i) $\lambda \cos \phi$, (ii) $\lambda \cos^2 \phi$, (iii) $\lambda \cos^3 \phi$. Find the corresponding potentials at the center.

Problem 3

- (a) A capacitor (of capacitance C_1) is charged by a battery (of potential V_0). We remove the battery and connect C_1 with another uncharged capacitor (C_2). Calculate the charges on C_1 and C_2 , respectively.
- (b) We now charge a capacitor (C_1) by a battery (V_1) and another capacitor (C_2) by another battery (V_2) . After removing the batteries, the two capacitors are connected such that terminals with the same charges join. Calculate the charges on C_1 and C_2 , respectively. What are the results when $V_1 = V_2 = V$?

Problem 4

A large solid slab with thickness d is centered at the origin and parallel to the yz plane. It occupies the region $-d/2 \le x \le d/2$ and has a uniform charge density ρ . (a) Evaluate the electric field at x = 0, x = d and x = 2d. (b) Plot $E_x(x)$ along the x-axis. (c) The reference point is set to the origin such that V(x = 0) = 0. Plot $|V(x \ge 0)|$. (d) Another identically charged slab is added and centered at x = d. Plot $E_x(x)$. (Remember to label all axes in the plots.)

Problem 5

On the x-axis, a solid sphere 1 of radius R is centered at x = -R and has a uniform charge density ρ_1 . Another solid sphere 2 of radius R is centered at x = +R and has a uniform charge density ρ_2 . At x = -R/2 on the x-axis, the net electric field turns out to be zero. (a) Compute ρ_1/ρ_2 . (Derivation steps for the electric field are required.) (b) Along the x-axis, sketch $E_x(-R \le x \le R)$. No need to label any axis.

$$V = \int_{0}^{2\pi} \frac{1}{4\pi\xi_{0}} \frac{\lambda R}{R^{2}} d\theta = \frac{1}{4\pi\xi_{0}} \frac{2\pi R}{R}$$

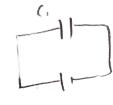
$$V = \int_{0}^{2\pi} \frac{1}{4\pi\xi_{0}} \frac{\lambda R}{R^{2}} d\theta = \frac{1}{4\pi\xi_{0}} \frac{G}{R}$$

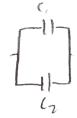
$$V = \frac{1}{4\pi\xi_{0}} \int_{0}^{\pi} dq = \frac{1}{4\pi\xi_{0}} \frac{G}{R}$$

$$V = \frac{1}{4\pi\xi_{0}} \int_{0}^{\pi} dq = \frac{1}{4\pi\xi_{0}} \frac{G}{R}$$

(iii)
$$V = \frac{1}{4\pi g_0} \int_{0}^{2\pi} \frac{\lambda \cos^2 \theta}{v} d\theta = \frac{\lambda}{4\pi g_0} R \int_{0}^{2\pi} \cos^2 \theta d\theta$$

(iii) $V = \frac{1}{4\pi g_0} \int_{0}^{2\pi} \frac{\lambda \cos^2 \theta}{v} d\theta$


(iv) $V = \frac{1}{4\pi g_0} \int_{0}^{2\pi} \frac{\lambda \cos^2 \theta}{v} d\theta$


(iv) $V = \frac{1}{4\pi g_0} \int_{0}^{2\pi} \frac{\lambda \cos^2 \theta}{v} d\theta$

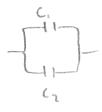
(iv) $V = \frac{1}{4\pi g_0} \int_{0}^{2\pi} \frac{\lambda \cos^2 \theta}{v} d\theta$

(iv) $V = \frac{1}{4\pi g_0} \int_{0}^{2\pi} \frac{\lambda \cos^2 \theta}{v} d\theta$

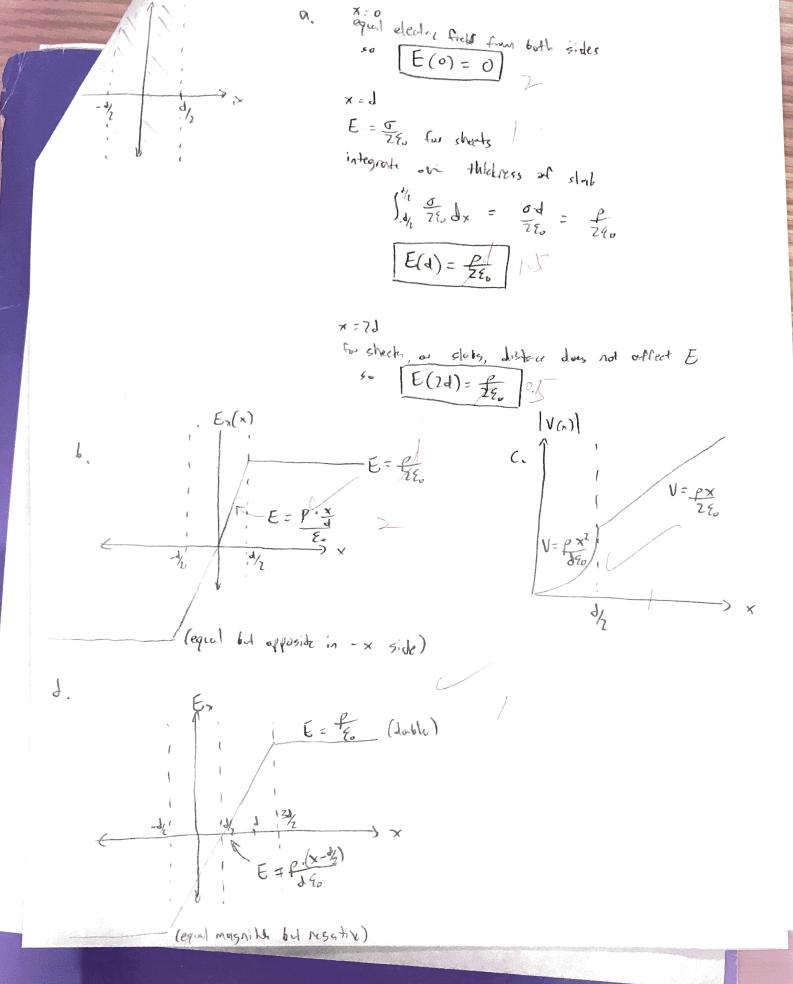
When battery removed

$$\frac{G_1}{C_1} = \frac{G_2}{C_2}$$

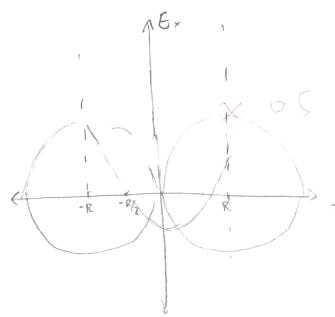
$$Q_1 = Q_1 \cdot \frac{C_1}{C_2} = (C_1 V_0 - Q_1) \cdot \frac{C_1}{C_2} \qquad Q_2 = \frac{C_2 Q_1}{C_1}$$


$$= \frac{C_1^2 V_0}{C_2} - C_1 Q_1$$

$$Q_{1}\left(1+\frac{C_{1}}{C_{2}}\right)=\frac{C_{1}^{2}V_{0}}{C_{2}}$$


$$Q_1 = \frac{C_1^2 V_0}{C_1 + C_2}$$

1. Q = C, V, Q = (2 V 2)


The darges on both sides double E VI = VI = V X

6.

$$\frac{1}{E_{2}} = \frac{1}{4\pi\xi_{0}} \cdot \frac{q_{1}}{r^{2}} = \frac{1}{4\pi\xi_{0}} \cdot \frac{P_{3} \cdot \frac{4}{3}\pi R^{3}}{q_{1}R^{2}} = \frac{P_{2}}{\xi_{0}} \cdot \frac{4R}{27}$$

$$q_{1} = \rho \cdot V : P_{2} \cdot \frac{4}{3}\pi R^{3}$$

