
Physics 1B - Midterm 1
Due Tuesday, April 21 at 11:59 PM on Gradescope
UCLA / Spring 2020 / Brian Naranjo

Problems

1) Fluid mechanics

Taking the y axis to point upward, consider an upright vase of height h0 whose base is
centered on the origin. The vase is rotationally symmetric about the y axis with radial
profile

r(y) = α
√
y + y0,

where α and y0 are positive constants.

The vase’s base is flat with radius r(y = 0) = α
√
y0, and the vase’s rim has radius

r(y = h0) = α
√
h0 + y0. Initially, the vase is filled to the rim with a fluid of density

ρ. The fluid at the top of the vase is exposed to the atmosphere of pressure p0. The
vase has a small circular drain of radius r0 (assume r0 << α

√
y0 so that the drain is

much smaller than the base) at the origin, through which the fluid flows out to the
atmosphere, as shown,

x

y

h0

In this problem, we will use Bernoulli’s principle and the equation of continuity to
calculate the time ∆t that it takes for all of the fluid to flow out.

a) What is the initial total fluid volume V in the vase?

b) In applying Bernoulli’s principle to the fluid’s top surface and to the vase’s drain,
we would like to neglect the kinetic energy term evaluated at the fluid’s top surface
because it is much smaller than the kinetic energy term evaluated at the vase’s
drain. Confirm this by calculating

[(1/2)ρv2]top

[(1/2)ρv2]drain

,

and showing that it is a small value.
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Then use Bernoulli’s principle to find the initial volume flow rate Q (dimensions
of volume per time) out of the drain. If we were able to maintain a volume flow
rate at this constant value, how long would it take to drain the vase?

c) At time t, the fluid level is at height y(t). Derive a relation of the form

dy

dt
= −f(y).

As previously, in your application of Bernoulli’s principle, you may drop the
kinetic energy term of the fluid’s top surface.

d) The previous differential equation is separable, and may be integrated as∫ ∆t

0

dt =

∫ h0

0

1

f(y)
dy.

Carry this out to find the total time ∆t that it takes for all of the fluid to flow
out.

2) Periodic motion

A particle of mass m has potential energy

U(x) = U0

[
3(x− x0)

x0

− (x− x1)3

x3
1

]
,

where U0 and x1 are positive constants, and x0 is to be determined.
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a) Calculate U ′(x) and U ′′(x). What are the conditions for there to be stable equi-
librium at x = 0? Find x0 so that both of these conditions are satisfied.

b) Use Taylor’s theorem to express U(x),

U(x) = U(0) + U ′(0)x+
1

2
U ′′(0)x2 + · · ·

up to, and including, the quadratic term. Then, identify the spring constant k
for small oscillations about the origin.

c) Assuming that the particle feels a viscous damping force of the form F = −bv,
write down the particle’s equation of motion expressed in terms of β ≡ b/(2m)
and ω2

0 ≡ k/m.
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d) We assume that ω0 > β, so that the motion is underdamped. Then, a general
solution may be written

x(t) = Ae−βt cos(ωt+ φ),

where ω ≡
√
ω2

0 − β2. We are not making the light damping approximation in
this problem, so that the motion may be heavily damped but still oscillatory. If
the initial conditions are x(0) = x0 and x′(0) = 0, then solve for A and tanφ.
(Hint: A 6= x0). Possible motion is
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3) Mechanical waves

Transverse waves on a string are described by a wave function y(x, t) that consists of
sinusoidal left-traveling and right-traveling waves of the same amplitude A, angular
frequency ω, and wave number k,

y(x, t) = A cos(kx− ωt) + A cos(kx+ ωt+ φ)

a) If the string has mass density µ, then what is the string’s tension T?

b) If there is a free boundary condition at x = 0, then what restriction must y(x, t)
satisfy at x = 0? What value of φ ensures that this restriction is satisfied? Using
this value of φ and the trig identity

cosA+ cosB = 2 cos
A+B

2
cos

A−B
2

,

factor the wave function into separate spatial and temporal factors, e.g.,

y(x, t) = f(x)g(t).

c) In addition to the free boundary condition at x = 0, further assume that there
is a free boundary condition at x = L. Only certain values of wave-vector k are
now allowed, which we label kn for n = 1, 2, 3, . . . (here, we only take positive
values of kn). Use the boundary condition at x = L to determine kn. Then, use
v = ω/k to find ωn. What are kn and ωn?

d) Recall that a standing wave transmits no net power. However, the string definitely
does have energy – it just stays in one place. The wave function yn(x, t) of the
nth harmonic is obtained by substituting kn and ωn back into your expression for
y(x, t) from the end of part b. Calculate the instantaneous kinetic energy of the
nth harmonic,

Kn(t) =

∫ L

0

1

2
(µdx)

(
∂yn
∂t

)2

.
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Solutions

1) Fluid mechanics

a)

V =

∫
vase

dV =

∫ h0

0

πα2(y + y0) dy = πα2

[
y2

2
+ y0y

]h0
0

= πα2h0

(
h0

2
+ y0

)
b) The equation of continuity says that the quantity Q = Av is conserved along

streamtubes,

[(1/2)ρv2]top

[(1/2)ρv2]drain

=
[v2]top

[v2]drain

=
[Q/A2]top

[Q/A2]drain

=
r4

0

α4(h0 + y0)2
.

This ratio is much less than one because we have assumed r0 � α
√
y0 < α

√
h0 + y0.

Bernoulli’s principle applied at the top and at the drain gives

p0 + ρgh0 + (1/2)ρv2
top = p0 + (1/2)ρv2

drain.

Dropping the top kinetic energy term, which we have now justified, gives

vdrain =
√

2gh0, and Q0 = [Av]drain = πr2
0

√
2gh0

Finally,

∆t0 =
V

Q0

=
α2

r2
0

√
h0

2g

(
h0

2
+ y0

)
c) Apply Bernoulli’s principle just like we did previously, except now the top of the

fluid is at height y instead of h0,

Q(y) = πr2
0

√
2gy.

The volume flow rate gives the rate at which the fluid volume in the vase is
decreasing,

Q(y) = −dV
dt

= −πr2(y)
dy

dt
= −πα2(y + y0)

dy

dt
,

so that
dy

dt
= − r2

0

√
2gy

α2(y + y0)
≡ −f(y)

d)

∆t =
α2

r2
0

√
2g

∫ h0

0

y + y0√
y

dy =
α2

r2
0

√
h0

2g

(
2

3
h0 + 2y0

)
Note that ∆t > ∆t0.
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2) Periodic motion

a)

U ′(x) = U0

[
3

x0

− 3(x− x1)2

x3
1

]
U ′′(x) = −6U0(x− x1)

x3
1

For stable equilibrium at the origin, we need

U ′(0) = U0

[
3

x0

− 3

x1

]
= 0

U ′′(0) =
6U0

x2
1

> 0.

Take x0 = x1 to satisfy both these conditions.

b)

U(x) = −2U0 +
1

2

(
6U0

x2
1

)
x2 + · · ·

k =
6U0

x2
1

c)
x′′ + 2βx′ + ω2

0x = 0

d) Don’t assume light damping, so include both terms in velocity,

x′(t) = −βx(t)− ωAe−βt sin(ωt+ φ).

x(0) = x0 = A cosφ =⇒ cosφ = x0/A

x′(0) = 0 = −βA cosφ− ωA sinφ =⇒ sinφ = −βx0/(ωA)

Therefore,

A = x0

√
1 + (β/ω)2

tanφ = −β/ω
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3) Mechanical waves

a) For a string, v =
√
T/µ, and phase velocity for a sinusoidal wave is always

v = ω/k,
T = µv2 = µω2/k2

b) At a free boundary condition, the slope of the the transverse wave function must
be zero,

∂y

∂x

∣∣∣∣
(0,t)

= 0.

This implies that φ = 0. You can either show this by directly evaluating the
slope at x = 0, or, you can use our result about how to satisfy a free boundary
condition with left-traveling and right-traveling waves.

Applying the trig identity,

y(x, t) = 2A cos(kx) cos(ωt)

c) Enforcing a free boundary condition at x = L, so that the slope at x = L vanishes,
restricts the allowed values of k and ω,

kn =
nπ

L
and ωn =

nπv

L
n = 1, 2, 3, . . .

d) The wave function for the nth harmonic is

yn(x, t) = 2A cos(knx) cos(ωnt).

The string’s transverse velocity is

∂yn
∂t

(x, t) = −2ωnA cos(knx) sin(ωnt)

At any instant time, we can find the nth harmonic’s instantaneous kinetic energy
by integrating over the string,

Kn(t) =

∫ L

0

1

2
(µdx)

(
∂yn
∂t

)2

= 2µ(ωnA)2 sin2(ωnt)

∫ L

0

cos2(knx) dx

= µL(ωnA)2 sin2 ωnt

Nota bene: The two following integrals are equal because of the boundary condi-
tions,

I ≡
∫ L

0

cos2
(nπx
L

)
dx =

∫ L

0

sin2
(nπx
L

)
dx.

Then, using a trig identity,

2I =

∫ L

0

[
cos2

(nπx
L

)
+ sin2

(nπx
L

)]
dx =

∫ L

0

dx = L,

we have
I = L/2

These integrals appear a lot, so it is helpful to remember this.


