- 1. A fixed-speed boat travels on a river where the river speed with respect to the ground is v_{RG} = 2.0 km/hr. It travels from ports A to B in t_{AB} = 30 minutes, a distance t_{AB} = 4.0 km along the shore. It then travels the path B to C of length t_{BC} = 3.0 km that is perpendicular to the current.
 - a) What is the speed of the boat in stationary water?
 - b) What is the time to travel the path B to C?
 - c) In crossing back to B the captain keeps the boat direction perpendicular to the shore. How far down the bank from B does it land? (30 points)

$$\frac{V_{BG}}{V_{BR}} \Rightarrow (V_{BR})_{x} = \frac{L_{AB}}{t_{AB}} - (V_{RG})_{x} = \frac{H.0 \text{ km}}{0.5 \text{ kn}} = \frac{1}{2.0 \text{ km}} = \frac{1}{2.0$$

b)
$$V_{RG}$$
 right triangle

 $V_{BR}^{2} = V_{BG}^{2} + V_{RG}^{2}$
 $V_{BR}^{2} = V_{BG}^{2} + V_{RG}^{2}$
 $\Rightarrow V_{BG} = \sqrt{V_{BR}^{2} - V_{RG}^{2}} = \sqrt{(6.0 \text{ km})^{2} - (2.0 \text{ km})^{2}}$
 $= 5.7 \text{ km}$
 $t_{BC} = \frac{L_{BC}}{V_{BG}} = \frac{3.0 \text{ km}}{5.7 \text{ km}} = \sqrt{0.53 \text{ ln} = 32 \text{ min}}$

$$\Delta t = \frac{L_{BC}}{V_{BR}} = \frac{3.0 \, \text{km}}{6.0 \, \text{km}} = 0.5 \, \text{lm}$$

$$\Delta x = (V_{BG})_x \Delta t = V_{RG} \Delta t = (2.0 \text{ m})(0.5 \text{ ls})$$

$$= (1.0 \text{ lsm}) to$$
right of B

- 2. A mass m = 1.0 kg sits at the top of an inclined plane with θ = 30°, and the coefficient of kinetic friction between the plane and mass is 0.3. It is given a push as it is released so that its initial speed down the incline is v_i = 3.0 m/s. After traveling L = 6 m it arrives at a cliff of height h = 4 m.
- a) What is the distance x from the base of the cliff where it hits the ground?
- b) What is the (vector) velocity of the mass just before it hits the ground? (35 points)

acceleration down plane $a = g \sin(\theta - \mu_k g \cos \theta)$ $V_0^2 = V_1^2 + 2(g \sin \theta - \mu_k g \cos \theta) L$ $V_0 = \sqrt{(3.0 \frac{1}{3})^2} + 2(4.9 \frac{1}{3^2} - (0.3)(9.8 \frac{1}{3})(9.86) (6.4)$

launches at -30° below houzontal $V_{OX} = V_{O} \cos \theta = 5.29 \frac{m}{5}$ $V_{OY} = -V_{O} \sin \theta = -3.05 \frac{m}{5}$

a) take t = time from launch at h to ground

$$y = 0 = h + v_{0}y^{t} - \frac{1}{2}gt^{2}$$

$$t = \frac{v_{0}y \pm \sqrt{v_{0}^{2} - 4(-\frac{1}{2}g)h}}{-g} = 0.6445, -lex65$$

$$x = v_{0}x^{t} = (5.29\%)(0.645) = [3.40 m]$$

b)
$$V_{fx} = V_{ox} = [5.29]$$

$$V_{fy} = V_{\phi y} - gt = -3.05 \frac{\text{M}}{\text{s}} - (9.8 \frac{\text{M}}{\text{s}})(0.64\text{s})$$

$$= [-9.36 \frac{\text{M}}{\text{s}}]$$

