
Physics 1A Midterm 1

Vectors; 1D, 2D, and 3D Kinematics

April 21, 2020

Question 3: Interpreting Plots of 1D Kinematic Quantities
[15 pts]

Figure 1: Graphs of x(t), v(t) and a(t).

In the velocity vs. time plot above, the velocity is a quadratic function of time; i.e. v(t) =
at2 + bt+ v0, for some (unspecified—this plot is just qualitative) constants a, b, and v0.

1. Given this v(t), reproduce the blank coordinate systems provided in Fig. 1 and draw in
the acceleration vs. time curve a(t) and the position vs. time curve x(t). You may or
may not have to make arbitrary choices in your drawing, but make sure that your plots
are qualitatively consistent with all features of the v(t) plot, paying particular attention
to what is happening at t1, t2, and t3. [8 pts.]

2. (i) In which time intervals is the object slowing down (decreasing in speed)? (ii) In which
time intervals is it speeding up (increasing in speed)? (iii) At which time points, if any, is
the acceleration zero? (iv) At which time points, if any, does the position in x reach a local
minimum? (Recall that a quantity increases in value on both sides of its local minima.)
(v) Does the object ever return to its position at t3? [7 pts.]

Question 4: Vector Operations [10 pts.]

1. Draw your own arbitrary vectors ~A and ~B in an x-y (Cartesian) coordinate plane. Do not
make them parallel, anti-parallel, or perpendicular to each other. Using graphical methods
of vector algebra, show how how you would construct the resultant vector ~R = 2 ~A− ~B from
its summand vectors. (Your drawing need not be perfect! You are expected to capture
the basic procedures of multiplying a vector by a scalar and subtracting another vector,
not to get the resulting lengths and directions exactly right.) [4 pts.]
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2. Write your vectors in the form ~A = Axî + Ay ĵ and ~B = Bxî + By ĵ, choosing numerical
values for the vector components. The exact values can be whatever you want - they’re
your vectors! - but they should be qualitatively consistent with the way you drew the
vectors on the plane. Now compute vector ~R = 2 ~A − ~B and give the result in polar
coordinates, providing the magnitude R and direction θ (measured counterclockwise with
respect to the positive x-axis) of the resultant vector. [3 pts.]

3. Compute c = ~A · ~B. Find the angle between ~A and ~B. [3 pts.]

Question 5: Kinematics Trolley Problem [25 pts.]

A dastardly physics professor has deposited you in a diabolical dilemma. You are standing next
to a forked track. An out-of-control trolley car is barrelling down the line with initial speed v0.
Within your reach is a lever whose position determines whether the trolley takes Track A or
B. One of your TAs is chained to Track A, and the other is chained to Track B. Both TAs are
located the same distance d from the fork. The evil but truthful professor tells you that on only
one of the tracks will the train reach a stop before it runs over the TA.

A

x=0 x=d

B

a(t) = −a2
0

v0
t

v(0) = v0

2

a(t) = −a0

8

v(0) = v0

a(t) = −a2
0

v0
t

?

Figure 2: The trolley problem.

The rules for the tracks are as follow:

1. At the beginning of Track A is a speed bump that reduces the trolley’s initial speed from
v0 to v0/2. The rest of the track is covered in sand that causes the trolley to slow down
with a constant acceleration of −a0/8 until it reaches a stop (vA = 0).

2. Next to Track B is a sign indicating that the trolley’s time-dependent acceleration on the

track is aB(t) = −a2
0

v0
t until the trolley reaches a stop (vB = 0).

3. Once the trolley reaches a stop on either track, it stays stopped forever (aA,B = 0 if
vA,B = 0).

Problems:

1. Find the stopping positions xf,A and xf,B reached by the trolley on tracks A and B,
respectively, in terms of the constants provided (v0, a0, and d: you may or may not need
all of these). Given that on one of the tracks, the train will stop before running over the
imperilled TA, in which position, A or B, should you place the lever to save both TAs?
[12 pts.]
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2. After saving the TAs, you try to free them, only to find the chains secured with an alphanu-
meric combination lock. The TAs tell you that they overheard the professor muttering
that the combination for the two locks is given by vavg,A and vavg,B , the average velocity
of the train on tracks A and B, respectively, between the time when the train enters that
fork of the track and the time when the it arrives at a complete stop. Find vavg,A and
vavg,B , expressed in terms of v0, a0, and d (you may or may not need all of these con-
stants). Explain in words why it is or is not possible for this result to be consistent with
your result from part (a). [7 pts.]

3. As you are walking away, the villainous professor appears again. “I will release you from
this hypothetical scenario,” she says, “if you can compute the instantaneous velocity of
the trolley on each track at a time halfway to the stopping time,” i.e., vA(TA/2) and
vB(TB/2), where TA is the time taken by the trolley to arrive at a complete stop on track
A and TB is the time taken by the trolley to arrive at a complete stop on Track B. Your
answer should be expressed in terms of v0, a0, and d (you may or may not need all of these
constants). [6 pts.]

Question 6: Shooting Hoops [25 pts.]

Adam and Beth are playing basketball and trying to make half-court shots (a long shot, from
the halfway line) with the ball going straight into the basket without touching the backboard.
Adam says that in order to minimize the effort it takes to make a basket, as you move farther
away from the basket, you should aim your shots at a lower angle than if you were closer to the
basket. Beth says that as you move farther away, it’s better to aim higher than when you were
close. Let’s find out who is right.

Consider the half-court shot. The ball is released from a height h, a horizontal distance L
away from the basket. The initial speed of the ball is v0 at an angle θ relative to horizontal.
The basket is at a height d. Ignore the effect of air resistance in this problem.

L

d
h

0v

θ

Figure 3: Hoops problem.

1. Write down the equations of motion x(t) and y(t) for the ball. Find the trajectory y(x)
by eliminating the variable t. [4 pts.]

2. By stipulating that the ball goes through the hoop, show that the equation for the required
initial speed in terms of the initial angle is [4 pts.]

v0 =

√
gL2

2[L sin θ cos θ + (h− d) cos2 θ]
. (1)

3. We want to find the trajectory with the least effort. Given that we want to minimize v0,
inspect Eq. 1 to identify the simplest expression, in terms of the initial angle θ, which we
should maximize. [2 pts.]
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4. Maximize the previous expression to show that the expression for the optimum angle θ is
[4 pts.]

tan(2θ) =
L

h− d . (2)

5. Because the tangent function is periodic, we must be careful to choose the correct range
when taking its inverse, which sometimes means that we need to add π rad = 180◦ to the
angle returned by a calculator’s tan−1 function. By inspecting Fig. 3, determine what
range of angles 2θ makes physical sense as the argument of the tangent function in Eq. 2,
and explain your reasoning in a sentence or two. [2 pts.]

6. Assuming that h < d, find the angle θ in the following limiting cases: L→ 0 and L→∞.
Do your answers make physical sense? Explain in words why or why not. By examining
these results, determine who is correct: Adam or Beth? Justify your answer in a sentence
or two. [7 pts.]

7. Given that a half court shot has L = 14.3 m, a basketball rim is a distance d = 3.05 m
above the ground and the ball is released from a height h = 2.0 m, find the angle θ for
least effort. Assuming g = 9.8 m/s2, at what speed v0 should you throw the ball for this
angle? [2 pts.]

Question 7: Circular Carnival Ride [25 pts.]

A Gravitron is a cylindrical carnival ride in which people stand against a circular outer wall
of radius R while the ride spins up to a constant speed about its axis. After the ride reaches
its maximum speed, the floor slowly tilts upward while the ride’s rotation provides enough
centripetal acceleration ac to keep the riders pressed against the wall. Ride restraints and
friction ensure that the riders remain in a fixed position along the circumference of the ride,
rather than slipping sideways.

R

v = speed of 
outer edge

r

Figure 4: Diagram of Gravitron in its vertical operating position.

1. Assume that the ride tilts upward until the floor is completely vertical, and suppose that
you are a Gravitron rider at the top of your circular trajectory. What condition must
the ride’s centripetal acceleration ac meet to ensure you stay against the wall rather
than starting to fall downward at this point in your trajectory? Your answer should be
expressed in the form ac >, <, or = some quantity aconst, where aconst is given in terms
of fundamental physical and numerical constants. Explain your answer in words. [5 pts.]
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2. If the ride has radius R, what is the speed v0 of the outer wall needed to meet the condition
specified in part (a)? Is this speed a minimum or maximum? Express your answer in terms
of R and fundamental physical and numerical constants. [3 pts.]

If you were unable to complete part (a), express your answer in terms of R and aconst.

3. Suppose the ride is 10. m in diameter (R = 5.0 m). Compute the period T of the ride
(the time taken to complete a full turn) assuming that the ride produces the centripetal
acceleration found in part (a). [3 pts.]

If you were unable to complete part (a), express your answer algebraically in terms of
aconst, then specify a value of your choice for aconst and plug it in to obtain a numerical
answer.

4. For added fun, Gravitrons typically provide about 3 times the acceleration found in part
(a) for riders on the outer wall. Suppose you are riding a Gravitron that is operating
under these conditions when a mischievous child slips out of the ride restraints and starts
climbing the floor towards the center axle of the ride. Show that the child’s centripetal
acceleration decreases as she gets closer to the axle, making sure to justify your work in
words. (Assume that the child is climbing much more slowly than the ride is spinning, so
that she is always instantaneously in a state of uniform circular motion.) [7 pts.]

5. Still assuming that the ride is operating with a centripetal acceleration at the outer wall
that is 3 times the value you found in part (a) (Note that you may use aconst and the same
value you chose for it in part (c) if you were unable to complete part (a)) and that the ride
is rotating in its vertical position, you must catch the child before she arrives at radius
r = αR from the center to keep her from falling downwards when she is at the top of her
trajectory. Find the numerical value of α. [7 pts.]
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Physics 1A Midterm 1—Solutions

Vectors; 1D, 2D, and 3D Kinematics

April 21, 2020

Question 3: Interpreting Plots of 1D Kinematic Quantities [15 pts.]

1.

Figure 1: Plots of acceleration, velocity and position.

Left-hand plot, acceleration should have the following features:
Linear
Negative slope
Crossing at t2

Right-hand plot, position should have the following features:
Turning points at t1 and t3
Signs of slopes
Linear at t2

Total points = [+8]

2. (i) 0→ t1, t2 → t3

(ii) t1 → t2, > t3

(iii) t2

(iv) t1

(v) No

Total points = [+7]
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Question 4: Vector Operations [10 pts.]

1.

A–B

R

2A

Figure 2: Example vectors.

A correct answer will:
Follow vector instructions
Show scalar multiplication with qualitative accuracy
Show subtraction with qualitative accuracy
Show resultant vector

Total points: [+4]

2. Example:

~A = 1̂i+ 2ĵ

~B = 4̂i+ 3ĵ

~R = (2− 4)̂i+ (4− 3)ĵ

|~R| =
√

5 θ = 150◦

A correct answer will:
Have a reasonable component decomposition
Compute the value of |~R|
Compute the value of θ

Total points: [+3]

3. Example:

c = ~A · ~B
= 4 + 6

= 10 = |A||B| cos θ Formula for dot product

|A| =
√

5

|B| = 5

θ = cos−1

(
10

5
√

5

)
= cos−1

(
2√
5

)
= 27◦

Total points: [+3]
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Question 5: Kinematics Trolley Problem [25 pts.]

1. Track A: Find the stopping distance by using the position-velocity relationship for constant acceleration and
setting the final velocity equal to zero.

v2
f,A −

(
v0
2

)2
= 2a(xf,A) From kinematic equation (iii) for constant acc.

−
(
v0
2

)2
= −2a08 xf,A Set vf,A = 0

v2
0

a0
= xf,A Solve for xf,A

Track B: In the case of non-constant acceleration, use the general kinematic relations between acceleration,
velocity, and position to find the displacement at the stopping time.

vB(t) = v0 −
t∫

0

a2
0

v0
t′ dt′ From general kinematic relation between velocity and acceleration

= v0 −
a2

0

2v0
t2

vB(TB) = 0 =
a2

0

2v0
T 2

B Find stopping time TB by letting vB(TB) = 0

⇒ TB =
√

2
v0

a0

xB(t) =

t∫
0

vB(t′) dt′ =

t∫
0

v0 −
a2

0

2v0
t′2 dt′ From general kinematic relation between v and x

= v0t−
a2

0

6v0
t3

xf,B = x(TB) = v0TB −
a2

0

6v0
T 3

B Solve for xf,B by substituting in the value of TB

= v0

(√
2
v0

a0

)
− a2

0

6v0

(√
2
v0

a0

)3

=
√

2

(
v2

0

a0
− v2

0

3a0

)
xf,B =

2
√

2

3

v2
0

a0

By comparing xf,B and xf,A, we see that both are proportional to v2
0/a0, so we only need to compare the

constants of proportionality: 2
√

2
3 < 1, so we should set the lever to position B.

Total points: [+12]
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2. The definition of average velocity is: vavg = ∆x
∆t .

Track A: At constant acceleration, vavg = vi+vf
2 , so

vavg,A =
1

2

v0

2

=
v0

4

Track B: In part 5.1 we found TB =
√

2v0
a0

, so

vavg,B =
xf,B

TB
=

2
√

2v2
0

3a0

a0√
2v0

= 2
3v0

This result is consistent with part 5.1. Although the average speed on track B was higher, the trolley also
had a larger acceleration. This meant that the denominator ∆t was much shorter for track B than track A,
producing a shorter stopping distance ∆x = vavg∆t in spite of the larger average speed.

Total points: [+7]

3. Track A: We first need to find the stopping time TA for this track, and then we can evaluate the velocity at
this time.

v(TA) = v(0) + aTA From kinematic relation (i) for constant acceleration

0 = v0
2 −

a0
8 TA Set v(TA) = 0

v0
2 = a0

8 TA Solve for TA

TA = 4
v0

a0

vA(TA/2) = v0
2 −

a0
8
TA

2 Plug TA/2 back into the expression for vA(t)

vA(TA/2) =
v0

4

Track B: From 5.1, we know that TB =
√

2v0
a0

, and vB(t) = v0− a20
2v0

t2. All we need to do now is substitute the
expression for TB/2 into the expression for vB(t).

vB(TB/2) = v0 − v0/4 = 3
4v0

Total points: [+6]
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Question 6: Shooting Hoops [25 pts.]

1. The equations of motion for the x and y coordinates are:

x(t) = v cos(θ)t

y(t) = v sin(θ)t− 1

2
gt2 + h.

Hence, t = x/v cos θ and the trajectory is

⇒ y = x tan θ − gx2

2v2 cos2 θ
+ h.

Total points: [+4]

2. Here we set x = L and y = d to give

d = L tan θ − gL2

2v2 cos2 θ
+ h.

Rearranging this for v gives the desired expression:

v =

√
gL2

2L sin θ cos θ + 2(h− d) cos2 θ
.

Total points: [+4]

3. Given that we want to minimize v, we must maximize the denominator in the above expression, i.e. maximize

f(θ) ≡ L sin θ cos θ + (h− d) cos2 θ.

Total points: [+2]

4. We can differentiate the above expression to give

∂f

∂θ
= L(cos2 θ − sin2 θ)− (h− d)2 sin θ cos θ.

Using the double-angle formulae for sine and cosine, we have

f(θ) = L cos 2θ − (h− d) sin 2θ.

Setting the derivative to zero and solving we have

θ =
1

2
atan

(
L

h− d

)
⇒ tan 2θ =

L

h− d

Total points: [+4]

5. θ should be between 0◦ and 90◦ in order to be aimed towards the basket, so 0 < 2θ ≤ 180◦(= π).

Total points: [+2]

6. L → 0 ⇒ tan(2θ) → 0 ⇒ 2θ = 0◦ or 180◦. 0◦ does not make physical sense for the case where you are
standing under the basket, so the answer must be L→ 0⇒ θ → 90◦. This makes sense as it implies that you
should shoot the ball nearly straight up as you approach the basket.
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L → ∞ ⇒ 2θ = 90◦ ⇒ θ = 45◦. This implies that in the limit that you are very far from the basket, you
should aim your shot at 45◦. This is consistent with the result for achieving the maximum range of a projectile
fired at a given initial velocity.

These results show that Adam is correct: You should lower your aim as you move away from the basket, but
never below 45◦ above the horizontal.

Total points: [+7]

7. Plugging in numbers we have

θ =
1

2

[
tan−1

(
14.3 m

2 m− 3.05 m

)
+ π

]
=

1

2

[
tan−1 (−13.62) + π

]
= 0.82 radians = 47◦.

Using our equation for v0 we have

v =

√
(9.81 m/s

2
)× (14.3 m)2

2× (14.3 m)× sin(0.82) cos(0.82) + 2(2.0 m− 3.05 m) cos2(0.82)
= 12 m/s.

Total points: [+2]

Question 7: Circular Motion Carnival Ride [25 pts.]

1. Centripetal acceleration is the radial acceleration required to keep an object moving in a circular trajectory
at a constant speed. At the top of the trajectory, the acceleration due to gravity is the minimum radial

acceleration experienced by the rider. (It may be larger than this is the ride is spinning fast enough for v2

r

to exceed g.) If the acceleration due to gravity exceeds v2

r = aC, then the rider will no longer remain in a
circular trajectory of radius R, but will accelerate towards the center of the circle. The condition the ride
must meet is therefore:

ac ≥ g

Total points: [+5]

2. By setting the formula for centripetal acceleration equal to the limit specified in part 7.1,
v20
R = g ⇒ v0 =

√
gR.

This is the minimum speed such that aC ≥ g.

Total points: [+3]

3. Use aC = 4π2R
T 2 ⇒ T =

√
4π2R
aC

= 4.5 s.

Total points: [+3]

4. We know that aC = 4π2r
T 2 . Because the child’s rotational period stays the same as she crawls toward the

center, T remains constant while r decreases, so aC decreases as the child crawls toward the center.

Total points: [+7]

5. Acceleration at outside, aC,outside = 3g =
v20
R .
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Figure 3: Sketch of Gravitron vectors.

When about to fall, v2

r = g. We have v(r) = 2πr/T and from part 7.3, T = 2π
√

R
ac,outside

= 2π
√

R
3g , so

v(r) = r
√

3g
R . From this we can find that g = v2

r = r2

r
3g
R = 3g

rR ⇒ r = Rg
3g = R/3⇒ α = 1/3.

Total points: [+7]
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