Physics 1A - Lecture 3 Final

Zhiyuan Yang

TOTAL POINTS

99 /113

QUESTION 1
1Problem 124/24

(a) Idea to use strategy of finding acceleration and

using this to determine velocity at bottom.
(a) FBD x-direction and resulting equation

(a) FBD y-direction and resulting equation

(a) Relationship between friction and normal force

(a) Kinematics + algebra to solve for final velocity

as function of angle or equivalent

(@) Argument that statement 1is true appealing to

math.
(b) Energy conservation + equation
(b) Solve for final speed
(c) Take mathematical limit and discuss

- 0 Point adjustment

QUESTION 2
2 Problem 2 26/ 27

(@) Reasonable argument that mass m_A will free

fall

(b) FBD + NSL equation mass A

(b) FBD + NSL equation mass B

(b) FBD + NSL equation for bottom pulley

(b) Constraint relating accelerations of both
masses (can be obtained via combination of more
than one constraint as in solution)
- 3 (b) Algebra and solve for a_{A,y}

(c) Plug in and solve for tension

(d) Take limit and compare to prediction

+ 2 Point adjustment

QUESTION 3
3 Problem 3 21/ 24

(@) Convincing argument that block on string will

require more initial speed.

+ 2 (b) Momentum conservation

+ 3 (b) Mechanical energy conservation

+ 3 (b) force analysis at top with recognition of

condition on tension to just make it around

+ 3 (b) Solve for desired speed

+ 3 (c) Angular momentum conseravation (linear

momentum also works)

+ 3 (c) Mechanical energy conservation with

recognition that velocity zero at top to just make it

around circle

+ 2 (c) Solve for desired speed

+ 2 (d) Determine from math with speed is greater

and comment on whether agrees with prediction
(a) plausible but incorrect reasoning (partial credit)
(b) speed solved but with arithmetic error
(c) speed solved but with arithmetic error
energy conservation but used incorrectly
momentum conservation used incorrectly

no credit

no justification for part a, O credit

QUESTION 4
4 Problem 4 14/ 24

+ 3 (a.1) horizontal total force is zero (no external
horizontal force actually)
+ 1 (a.2) vertical net forces is close to zero, as long as
the system center of mass doesn't change much in
the vertical direction
+ 3 (b) Argue stays at rest using momentum
conservation and initial condition

(c) Argue net external torque in parallel-direction
zero since external forces are vertical, so ang. mom.
in that direction conserved

+ 3 (d.1) angular momentum conservation equation



(d.2) the correct result (c+l)w

(e.1) Compute kinetic energy change result
expression correctly

(e.2) give reasonable argument that why the
energy increases
+ 4 (f) when c goes to zero, all the changes are
negligible. relate math with physics.

zero

QUESTION 5
5 Problem 514/14
+ 5 (a) Kinematics or equivalent argument to obtain
the correct range expression and simplify
+ 3 (b) Compute correct Taylor expansion
coefficients and put together to write answer.
+6 (c)
(c) setup correct, but arithmetic errors
(a) correct setup, but arithmetic errors/missing
coefficients
(b) unsimplified or arithmetic errors
(c) half credit for giving two answers/good attempt
(a) incorrect attempt
incorrect attempt

C

(b)
)

qualitative attempt/incorrect attempt

— —

¢) correct but with minor arithmetic error

no credit
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Problem 1.
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Two identical boxes slide down different ramps pictured above having started at rest
from their tops. The boxes start at the same height. The coefficient of kinetic friction s
between the boxes and the ramps is the same in both cases, and both ramps are fixed to
the ground. The coefficient of static friction is not large enough to prevent the blocks from
sliding down the ramps.

Let box A be the box on the left, and let box B be the box on the right. Consider the
following statements:

I. The speed of box A is greater than the speed of box B when they reach the bottoms
of their ramps.

I1. The speed of box A is less than the speed of box B when they reach the bottoms of
their ramps.

III. The speed of box A is the same as the speed of box B when they reach the bottoms
of their ramps. '

Questions.

(a) Use force methods (energy methods not allowed!) to determine which if these state-
ments is true when g # 0. You'll find it useful to name your own relevant variables
so that you can answer this question mathematically.

(b) Use energy methods to determine which if these statements is true when iy # 0. You'll
find it uscful to name your own relevant variables so that you can answer this question
mathematically.

(c¢) Does the answer change when yy, = 07 Justily using your answers from the previous
parts.
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Problem 2.

Consider the apparatus above. All pulleys and ropes are massless.

(a) In limit mp — 0, would you expect the magnitude of the acceleration of mass A to be
greater than, equal to, or less than g7 Explain using physical reasoning.

(b) Determine an expression for the acceleration of mass A in terms of the given variables.
(c) Determine an expression for the tension in the top rope in terms of the given variables.

(d) Does your mathematical answer in part (b) agree with your answer in part (a)? Ex-
plicitly verify this mathematically. If the answers don’t agree, you should consider
re-evaluating either your math, or your intuition, or both.
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Problem 3.
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In the diagram on the left, a small block of mass M is connected to a massless string
of length ¢ that is frictionlessly pivoted at its end so it can spin around in a vertical circle.
In the diagram on the right, an identical block of mass M is connected to a rigid, @
rod of length ¢ that is frictionlessly pivoted at its end so it can spin around in a vertical
circle. In both cases, the block starts out hanging at rest, and a clay pellet of mass m is
fired horizontally at the block and gets lodged inside.

(a) In which case would you expect the pellet needs to be shot with a higher speed for the
block to move all the way around in a vertical circle with radius ¢?

(b) In the case on the left, with what speed does the pellet need to be shot at the block
so the block will make it all the way around in a vertical circle of radius £7

(c) In the case on the right, with what speed does the pellet need to be shot at the block
so the block will make it all the way around in a vertical circle of radius €7

(d) According to your answers to parts (b) and (c), in which case does the speed of the
pellet need to be greater? Does your mathematics agree with your intuition from part

(a)?
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Problem 4.

A large, uniform solid disk of mass M and radius R initially spins on the surface of a
flat, frictionless surface at an angular speed w. Its center of mass is initially at rest relative
to the table. Recall that the moment of inertia of a uniform solid disk for rotations about
an axis passing through its center of mass and perpendicular to its face is M R?/2.

Josh and Nancy are initially standing diametrically opposite one another on the edge of
the disk (so the initial distance between them is 2R). Next they walk directly toward one
another along the diameter joining them until they meet at the disk’s center.

They both move with the same speed as a function of time and they both have mass
(¢/4)M where c is a unitless constant. Let P denote the total momentum of the Josh +
Nancy + disk system. Let L denote the angular momentum of the Josh +Nancy + disk
system in the direction parallel to the axis of rotation.

(a) Is P conserved as Josh and Nancy walk to the center?”

(b) What is the motion of the center of mass of the disk as Josh and Nancy walk to the
center?

(c) Is Ly conserved as Josh and Nancy walk to the center?
(d) Determine the angular speed of the disk when Josh and Nancy are at its center.

(e) Is the mechanical energy of the system conserved as Josh and Nancy walk to the center?
If it is conserved, prove it. If not, compute the change in mechanical energy and show
that it’s nonzero. In both cases, give physical reasoning to explain why your answer
makes sense as well. If it doesn’t make sense, you may consider re-evaluating either
your intuition about this scenario, or your math, or both.

(f) What would you expect the answer to parts (d) and (e) would be in the limit ¢ — 07
Do your mathematical answers agree with these expectations?
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Problem 5. v

<

(a) Consider a projectile launched at speed v angle 6 relative to the horizontal on flat
ground near the surface of a planet with gravitational acceleration gp. Derive an
expression for the range rp of the projectile on this planet.

(b) If an object of mass m is a distance r away from the center of a planet of mass M,
then it experiences an attractive gravitational force of magnitude

GMm

r2

i (1)
where G is Newton’s gravitational constant. Using Newton’s Second Law to set this
equal to the object’s mass times the magnitude a of its acceleration, we find that the
object’s gravitational acceleration is independent of its mass, but depends on G, M
and r:

GM
0= 3 2)

In other words, it depends only on a fundamental physical constant, the mass of the
planet, and the distance to the planet’s center. If the object is at a height h above
the planet’s surface, and if the planet’s radius is R, then the gravitational acceleration

becomes
. * GM GM h\ 2
el (o) X = i fpall 3
(0) 4 T/l"‘ “TR¥n: TR ( R) @)

What is the Taylor expansion of the acceleration due to gravity in the variable z = h/R
about z = 0 including only the first three nonzero terms?
A st three nonzero terms.

Useful observations. You should find that the first non-vanishing order equals
GM/R?>. When you are close to the surface of the planet, only this first nonzero
term is significant because z = h/R will be extremely small, so this expression gives

the acceleration due to gravity near the planet’s surface. X = h/R
GM h
="y = R: X (4)

In the case of Earth, one can for example show that by using this term to compute the
acceleration due to gravity, the quantity G Mg/ R% gives a value very close to g, where
Mg is the Barth’s mass, and Rp is the Earth’s radius. In other words, one can predict
the acceleration due to gravity near the Earth’s surface using its mass and its radius!
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(c) Alice is on planet A whose mass is Mg/2 and whose radius is Rg. Bob is on planet B
whose mass is V3Mg and whose radius is v2Rg.

Alice throws a ball at a speed v at a certain angle relative to the ground that maximizes
the range of the thrown object. Bob throws a ball at speed v/2v and at an angle 6
relative to the ground, and the ball ends up having the same range as Alice’s ball.

At what angle 6 did Bob throw the ball?
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