
Physics 1A - Winter 2016

Lecture 3

Midterm Exam #1 - Solutions

Problem 1.

Novak drops a tennis ball from rest onto a tennis court. The ball bounces up and down,
but because of the impact with the ground, the height to which rises after each bounce is
2/3 of what is was before that last bounce. You may neglect air resistance, and you may
treat each bounce as if it were instantaneous.

(a) Sketch graphs of the y-component of position, velocity, and acceleration of the tennis
ball as functions of time from the moment when it’s dropped, to the moment when it
bounces for the third time. Explain how you generated your plots.

(b) Sketch a graph of the speed of the tennis ball as a function of time from the moment
when it’s dropped, to the moment when it bounces for the third time. Explain how
you generated your plot.

Solution.

(a) When the ball is in the air, its y-position as a function of time between bounces looks
like a downward-facing parabola because y(t) = y0 + v0,yt − 1

2
gt2 is a parabola with

a negative coefficient in front of the t2 term. The apex of each successive parabola
gets lower and lower by a multiplicative factor 2/3 between successive bounces. The
y-component of velocity is a downward-sloping linear function with slope −g between
each bounce since vy(t) = vy,0 − gt. Since the ball doesn’t go as high each time, its

max velocity between each bounce also decreases by a factor of
√

2/3 (this can be
demonstrated using the kinematics equation v2y,f = v2y,i − 2g(yf − yi). Finally, the
acceleration of the ball is a constant −g between bounces. The bounces themselves
are instantaneous, so strictly speaking the acceleration there would be “infinite” in our
idealization, but since we haven’t learned how to mathematically deal with this sort of
thing, the bounce points themselves can simply be omitted from the plots.
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(b) Recall that the speed is the magnitude of the velocity, so in this case we have

|v(t)| =
√
vx(t)2 + vy(t)2 =

√
vx(t)2 + 0 = |vx(t)| (1)

Thus, to generate the speed plot, we need only take the absolute value of the vx plot
at every point in time.

Problem 2.

Ally and Bernard are pulling on opposite ends of a rope. They are each pulling with a
force of about 500 N. The rope is everywhere parallel to the ground to good approximation.

(a) If the rope is massless, what is the tension in the middle of the rope?

(b) If the rope has nonzero mass M and length `, then does the answer change? If so,
explain. If not, explain why not.

Solution.

(a) Consider drawing a free body diagram of the left-hand half of the rope (where we
assume Ally is pulling on the left). There will be two forces on it: the force FAlly

of Ally pulling to the left, and the tension Tmiddle of the right-hand half of the rope
pulling to the right. On the other hand, the whole rope, including the left half, has
zero acceleration since Ally and Bernard are pulling with equal forces on either side.
Therefore, applying Newton’s Second Law to the left-hand half of the rope gives

Tmiddle − FAlly = Mleft−halfa = 0 · 0 = 0. (2)

It follows that

Tmiddle = FAlly = 500 N (3)
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(b) The precise answer. If the cable has nonzero mass M , then no matter how hard
one pulls on either side of the rope, it can never be completely horizontal. To see why,
consider a small segment of the rope in the middle of mass ∆m. The acceleration of this
piece of the rope is zero which means that there is no net force on it. However, since it
has mass, this piece has a nonzero weight, and if the rope were completely horizontal,
there would be no force to cancel out that weight in the y-direction. Therefore, the
rope must sag a little bit so that in the center, the tension has some component in
the vertical direction that cancels the force due to gravity. This issue did not arise in
the case of the massless rope because the rope, having no mass, is not influenced by
gravity. Therfore, in the case of the massive rope, the answer does change (it’s not
necessary to compute it in this case for the purposes of this question – it’s actually a
rather tricky calculus problem to do that.)

Another answer we accepted. If the rope is assumed completely horizontal in this
case as well (even though strictly speaking this is not possible), then one can reason
as follows:

If the cable has nonzero mass M and length `, then this does not change the answer.
Even though the mass of the left-half is now nonzero, its acceleration is still zero
because the rope as a whole is still not accelerating due to the opposing force of the
two spacecraft. It follows that the same Newton’s Second Law calculation will hold
and the force in the middle will remain unchanged.

Problem 3.

A massless pulley hangs from the ceiling of an elevator by a uniform chain of mass M and
length ` connected to the pulley’s center. Masses m1 and m2 are connected by a massless
rope and hang on either side of the pulley. The elevator has acceleration A relative to the
ground. Let T (y) denote the tension in the chain a distance y above the point at which it is
connected to the pulley.

(a) What would you predict T (0) would be if m1 = m, m2 = m and A = 0? Explain using
physical reasoning.

(b) Determine the general expression for T (y) in terms of the given variables.

Solution.

(a) When the acceleration of the elevator is zero, and when the masses on both sides are
equal, the tension in the rope becomes the same as that of an Atwood’s machine with
equal masses fixed to a ceiling (strictly speaking in this case the elevator could also
have constant velocity, but the same conclusion would apply in that case as well). In
that circumstance, the masses would not be accelerating either because they balance
one another, and the tension holding the pulley up would simply be the sum of the
weights hanging from it, namely

T (0) = 2mg . (4)
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(b) We draw four free body diagrams: one for each mass hanging, one for the pulley, and
one for the section of rope between where its is attached to the pulley and a point a
distance y above that.

Applying Newton’s Second Law to each of these objects in the y-direction (but omitting
y subscripts for simplicity) gives

T −m1g = m1a1, T −m2g = m2a2 T (0)− 2T = 0, T (y)− M

`
yg − T (0) =

M

`
yA

(5)

This is four equations in five unknowns a1, a2, T, T (0), T (y). We have already implicitly
used Newton’s Third Law as much as we can because we noticed that T (0) is the
magnitude of the force of the rope on the pulley and the magnitude of the force of
pulley on the rope. Therefore, what remains is to find an appropriate constraint.
Noting that the rope is of constant length, one can systematically obtain the following
constraint:

2A = a1 + a2. (6)

We now have five equations in five unknowns, and we can solve. First, let’s use the
first two Newton’s Second Law equations and the constraint to get rid of a1 and a2.
Dividing the first NSL equation by m1 and the second by m2, adding them together,
and then invoking the constraint, we obtain

T

(
1

m1

+
1

m2

)
− 2g = 2A. (7)

Solving for T and then plugging the result into the NSL equation for the pulley gives

T (0) =
4m1m2

m1 + m2

(g + A) (8)

Finally, we plug this into the NSL equation for the segment of rope and solve for T (y)
to obtain the desired result:

T (y) =

(
4m1m2

m1 + m2

+
M

`
y

)
(g + A) (9)
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If we take the limit A→ 0 and set m1 = m2 = m, then this gives

T (0) =

(
4m ·m
m + m

+ 0

)
(g + 0) = 2mg (10)

as we had predicted in part (a) on physical grounds.
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