
Physics 1A - Winter 2016
Lecture 3

Final Exam
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Problem 1.

Two identical boxes slide down different ramps pictured above having started at rest
from their tops. The boxes start at the same height. The coefficient of kinetic friction µk

between the boxes and the ramps is the same in both cases, and both ramps are fixed to
the ground. The coefficient of static friction is not large enough to prevent the blocks from
sliding down the ramps.

Let box A be the box on the left, and let box B be the box on the right. Consider the
following statements:

I. The speed of box A is greater than the speed of box B when they reach the bottoms
of their ramps.

II. The speed of box A is less than the speed of box B when they reach the bottoms of
their ramps.

III. The speed of box A is the same as the speed of box B when they reach the bottoms
of their ramps.

Questions.

(a) Use force methods (energy methods not allowed!) to determine which if these state-
ments is true when µk 6= 0. You’ll find it useful to name your own relevant variables
so that you can answer this question mathematically.

(b) Use energy methods to determine which if these statements is true when µk 6= 0. You’ll
find it useful to name your own relevant variables so that you can answer this question
mathematically.

(c) Does the answer change when µk = 0? Justify using your answers from the previous
parts.

Solution.
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(a) We’ll determine the speed of the box at the bottom of a ramp of height h and whose
surface makes an angle θ with the horizontal, then we’ll see how the speed varies as
a function of θ. Box A slides down a ramp with a larger value of θ, so we should be
able use the functional dependence of the speed at the bottom on theta to determine
if it reaches the bottom of the ramp with a speed that is greater than or less than that
of box B. Our strategy for finding the speed at the bottom using forces will be to use
NSL to determine the acceleration of the box in the direction parallel to the surface of
the ramp, and then use kinematics to determine its speed at the bottom.

If we draw a free body diagram for a box on a ramp of height h and angle θ, and if
we orient our axes so that the positive x-axis points down the ramp, while the positive
y-axis points upward, perpendicular to the ramp, we obtain the following equations
from NSL in the x- and y-directions:

mg sin θ − fk = max, N −mg cos θ = 0 (1)

where fk is the magnitude of the force of kinetic friction. We also have the following
relationship between the magnitude of the friction force and the normal force:

fk = µkN. (2)

This is a system of three equations in three unknowns fk, N, ax. We only really want
to solve for ax:

ax = (sin θ − µk cos θ)g. (3)

The kinematics equation v2f,x = v2i,x + 2ax(xf − fi) then allows us to solve for the speed
at the bottom of the ramp. The length of the part on which the box slides in terms of
the height h and angle θ of the ramp is xf − xi = h/ sin θ. Therefore we have

vf,x =

√
2(sin θ − µk cos θ)g

h

sin θ
=
√

2gh

√
1− µk

tan θ
(4)

Notice that since tan θ is an increasing function of θ, the expression µk/ tan θ is a
decreasing function of θ, so the expression 1 − µk/ tan θ is an increasing function
of θ. Therefore, the speed at the bottom of the ramp is greater for larger θ. So
statement I is true.

(b) We reproduce the expression for vf,x using energy methods, then the rest of the reason-
ing from part (a) carries over unscathed. We set the zero of potential energy to be the
bottom of the ramp, then the potential energy at the top equals the kinetic energy at
the bottom minus the work done by friction since friction is the only non-conservative
force that performs nonzero work:

mgh =
1

2
mv2f −

(
−µkmg cos θ

h

sin θ

)
(5)
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solving for vf gives precisely the expression obtained through force methods in part
(a):

vf =
√

2gh

√
1− µk

tan θ
(6)

Well aint that nifty!

(c) When there is no friction, µk → 0, and the expression for vf reduces to
√

2gh, an
expression independent of θ. This makes sense because when there is no friction, the
kinetic energy of the block at the bottom is the same as the potential energy at the
top, regardless of the ramp’s length.
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Problem 2.

b

b

b

mA

M

mB

R

Consider the apparatus above. All pulleys and ropes are massless.

(a) In limit mB → 0, would you expect the magnitude of the acceleration of mass A to be
greater than, equal to, or less than g? Explain using physical reasoning.

(b) Determine an expression for the acceleration of mass A in terms of the given variables.

(c) Determine an expression for the tension in the top rope in terms of the given variables.

(d) Does your mathematical answer in part (b) agree with your answer in part (a)? Ex-
plicitly verify this mathematically. If the answers don’t agree, you should consider
re-evaluating either your math, or your intuition, or both.

Solution.

(a) In the limit mB → 0, the situation effectively reduces to mass mA suspended from
a rope that is wrapped around the pulley. Since the pulley is massless, it’s rotation
will not impede the motion of mass mA, and we would expect it to fall freely – the
magnitude of its acceleration should be equal to g.

(b) Applying Newton’s Second Law in the y-direction (which we take upward positive)
to mass A, mass B, and the pulley from which mass B hands, we find the following
Newton’s Second Law equations:

TA −mAg = mAaA,y, TB −mBg = mBaB,y, TA − 2TB = 0. (7)

This is a system of three equations in four unknowns TA, TB, aA,y, aB,y. We are missing
an equation. As always, when we’re at this point in such a problem, we should look
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for some constraints. It should be pretty clear from the diagram that the accelerations
of the two masses are related somehow, but how exactly? By drawing one of our
standard diagrams for deriving constraints, we find the following relationships between
the positions yA and yB of masses A and B, the positions yP,A and yP,B of the pulleys
from which they hang respectively, the radii RA and RB of those pulleys, and the
lengths `A and `B of the ropes from which masses A and B hang. We take the ground
to have position y = 0.

yP,A − yA + πRA + yP,A − yP,B = `A (8)

yP,B − 0 + πRB + yP,B − yB = `B. (9)

Taking two time derivatives on both sides of these equations, and taking note of the
fact that the positions of the upper pulley, the radii of both pulleys, and the lengths
of both ropes are constant, we find

−aA,y − aP,B = 0 (10)

2aP,B − aB,y = 0. (11)

Combining these equations gives the desired constraint relating the accelerations of the
two masses:

aB,y = −2aA,y. (12)

Now we’re cookin’ ! Combining this with our NSL equations gives four equations in
four unknowns, and we can solve. Well I dunno about you, but I’m pumped to do
some algebra. Using the last NSL equation to eliminate TB in favor of TA, and using
the constraint to eliminate aB,y in favor of aA,y, we obtain the following system of two
equations in two unknowns for TA and aA,y:

TA −mAg = mAaA,y,
1

2
TA −mBg = mB(−2aA,y). (13)

If we subtract twice the second equation from the first, then we eliminate TA and
obtain the following equation for aA,y:

−mAg + 2mBg = mAaA,y + 4mBaA,y, (14)

and therefore:

aA,y =
2mB −mA

4mB +mA

g . (15)

(c) Using the same system of two equations in two unknowns from the last steps in part
(b), we can easily now compute the tension in the rope holding mass A since we already
know its acceleration:

TA = mA(g + aA,y) = mA

(
1 +

2mB −mA

4mB +mA

)
g =

6mAmB

4mB +mA

(16)
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As specified on the exam, the ”top rope” refers to the rope holding up the top pulley.
Applying NSL to this pulley shows that the tension T in this rope is twice TA. So we
have

T =
12mAmB

4mB +mA

(17)

(d) When mB → 0, we find that aA,y → −(mA/mA)g = −g as described in our prediction
above.
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Problem 3.

b b

m
M

m
M

ℓ ℓ

In the diagram on the left, a small block of mass M is connected to a massless string
of length ` that is frictionlessly pivoted at its end so it can spin around in a vertical circle.
In the diagram on the right, an identical block of mass M is connected to a rigid, massless
rod of length ` that is frictionlessly pivoted at its end so it can spin around in a vertical
circle. In both cases, the block starts out hanging at rest, and a clay pellet of mass m is
fired horizontally at the block and gets lodged inside.

(a) In which case would you expect the pellet needs to be shot with a higher speed for the
block to move all the way around in a vertical circle with radius `?

(b) In the case on the left, with what speed does the pellet need to be shot at the block
so the block will make it all the way around in a vertical circle of radius `?

(c) In the case on the right, with what speed does the pellet need to be shot at the block
so the block will make it all the way around in a vertical circle of radius `?

(d) According to your answers to parts (b) and (c), in which case does the speed of the
pellet need to be greater? Does your mathematics agree with your intuition from part
(a)?

Solution.

(a) The block attached to the rod can make it all the way around the circle by just barely
having a nonzero velocity at the top, but if the block attached to the string had such
a low velocity at the top, then it would fall under the influence of gravity with no rigid
rod to keep it up, so I’d expect that the block attached to the string would need a
larger initial speed at the bottom, and therefore the pellet would need to strike the
block with a higher speed.
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(b) We take the positive x-direction to the right and the positive y-direction upward.
When the pellet strikes the block attached to the string, we can apply momentum
conservation in the x-direction to obtain a relationship between the velocity vbottom of
the combined pellet + block system directly after the collision to the velocity v of the
pellet before the collision in the x-direction.

mv = (m+M)vbottom (18)

We can then use mechanical energy conservation to relate vbottom to vtop, the velocity
of the pellet + block at the top of its trajectory:

1

2
(m+M)v2bottom =

1

2
(m+M)v2top + (m+M)g(2`). (19)

Finally, if we want the pellet + block system to just make it around the circle, then
this corresponds to the string just barely going slack at the top. This means that only
the force due to gravity will apply to the system at the top, and NSL in the y-direction
at that moment gives

−(m+M)g = −(m+M)
v2top
`
. (20)

We thus have a system in three equations in three unknowns v, vbottom, vtop. Solving
for v gives

v =
m+M

m

√
5gl . (21)

(c) The case on the right which includes the rod instead of the string is different in the
respect that because the rod is rigid, it could potentially exert an external force on
the pellet + block system during the collision and change its momentum. We can
get around this by using angular momentum conservation in the z-direction instead,
which, taking the point at which the rod is fixed as the axis of rotation, gives

mv` = (m+M)vbottom` (22)

This case is also different in the respect that the condition for the block to make it
around the circle is different. In fact, the velocity of the block at the top can just barely
be zero, and it will still make it around the circle. Therefore, the energy conservation
equation should read

1

2
(m+M)v2bottom = (m+M)g(2`) (23)

We now have a system of two equations in two unknowns v, vbottom. Solving for v gives

v =
m+M

m

√
4g` . (24)

(d) We see from our answers that the speed of the pellet needs to be greater in the case
with the string since

√
5 >
√

4. This aligns with out intuition from part (a).

9



Problem 4.

A large, uniform solid disk of mass M and radius R initially spins on the surface of a
flat, frictionless surface at an angular speed ω. Its center of mass is initially at rest relative
to the table. Recall that the moment of inertia of a uniform solid disk for rotations about
an axis passing through its center of mass and perpendicular to its face is MR2/2.

Josh and Nancy are initially standing diametrically opposite one another on the edge of
the disk (so the initial distance between them is 2R). Next they walk directly toward one
another along the diameter joining them until they meet at the disk’s center.

They both move with the same speed as a function of time and they both have mass
(c/4)M where c is a unitless constant. Let P denote the total momentum of the Josh +
Nancy + disk system. Let L‖ denote the angular momentum of the Josh +Nancy + disk
system in the direction parallel to the axis of rotation.

(a) Is P conserved as Josh and Nancy walk to the center?

(b) What is the motion of the center of mass of the disk as Josh and Nancy walk to the
center?

(c) Is L‖ conserved as Josh and Nancy walk to the center?

(d) Determine the angular speed of the disk when Josh and Nancy are at its center.

(e) Is the mechanical energy of the system conserved as Josh and Nancy walk to the center?
If it is conserved, prove it. If not, compute the change in mechanical energy and show
that it’s nonzero. In both cases, give physical reasoning to explain why your answer
makes sense as well. If it doesn’t make sense, you may consider re-evaluating either
your intuition about this scenario, or your math, or both.

(f) What would you expect the answer to parts (d) and (e) would be in the limit c→ 0?
Do your mathematical answers agree with these expectations?

Solution.

(a) Since there is no friction on the surface, the net external force on the system in the
horizontal direction, the total momentum of the system in that direction is certainly
conserved. Moreover, as long as Nancy and Josh walk in such a way that their centers
of mass don’t accelerate appreciably in the vertical direction, the vertical position of
the center of mass of the system remains stationary, so the total momentum of the
system in that direction is conserved as well.

(b) Since the total momentum of the system is conserved, the acceleration of the center
of mass is zero as Nancy and Josh walk. Since the center of mass starts at rest, it
therefore stays at rest.
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(c) We take the plane of rotation of the disk to be the x-y plane. The only external
forces on the system are gravity and the normal force, both of which are in the vertical
direction. Therefore, the torques they exert can only be in the x-y plane. As a result,
the net external torque in the z direction is zero, so the angular momentum in that
direction, which is precisely L‖, is conserved.

(d) We use angular momentum conservation in the vertical direction, taking the axis of
rotation of the disk as the location of the origin. The angular momentum of the system
before Nancy and Josh have started walking is therefore

Lz,i =

(
c

4
MR2 +

c

4
MR2 +

1

2
MR2

)
ω (25)

when Nancy and Josh are at the center of the disk, the final angular momentum is

Lz,f =
1

2
MR2ωf (26)

Setting Lz,i = Lz,f and solving for ωf gives

ωf = (c+ 1)ω (27)

(e) The initial and final gravitational potential energies of the system are the same since
no object moves vertically as Josh and Nancy walk from the edge to the center, but
the initial and final kinetic energies may not be the same. The initial kinetic energy is

Ki =
1

2

(
c

4
MR2 +

c

4
MR2 +

1

2
MR2

)
ω2 =

1

2

c+ 1

2
MR2ω2 (28)

the final kinetic energy is

Kf =
1

2

(
1

2
MR2

)
((c+ 1)ω)2 = (c+ 1)Ki (29)

The difference is therefore

Kf −Ki = (c+ 1)Ki −Ki = cKi > 0 (30)

The kinetic energy of the system increased! Does this make physical sense? Yes. In
order for Josh and Nancy to walk to the center, their bodies need to expend some
potential energy from the food they’ve presumably eaten earlier in the day, and this
energy shows up in the end as an increase in the kinetic energy of the system.

(f) When c → 0, this corresponds to the masses of Josh and Nancy vanishing. In this
case, one would expect that their walking to the center has no affect on the angular
speed of the disk, and therefore no effect on the kinetic energy of the system as well.
So one would expect that ωf → ω and Kf −Ki → 0. This is precisely what we find in
our mathematical answers since ωf = (c+ 1)ω → ω and Kf −Ki = cKi → 0.
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Problem 5.

(a) Consider a projectile launched at speed v angle θ relative to the horizontal on flat
ground near the surface of a planet with gravitational acceleration gP . Derive an
expression for the range rP of the projectile on this planet.

(b) If an object of mass m is a distance r away from the center of a planet of mass M ,
then it experiences an attractive gravitational force of magnitude

F =
GMm

r2
(31)

where G is Newton’s gravitational constant. Using Newton’s Second Law to set this
equal to the object’s mass times the magnitude a of its acceleration, we find that the
object’s gravitational acceleration is independent of its mass, but depends on G, M
and r:

a =
GM

r2
(32)

In other words, it depends only on a fundamental physical constant, the mass of the
planet, and the distance to the planet’s center. If the object is at a height h above
the planet’s surface, and if the planet’s radius is R, then the gravitational acceleration
becomes

a =
GM

(R + h)2
=
GM

R2

(
1 +

h

R

)−2
(33)

What is the Taylor expansion of the acceleration due to gravity in the variable x = h/R
about x = 0 including only the first three nonzero terms?

Useful observations. You should find that the first non-vanishing order equals
GM/R2. When you are close to the surface of the planet, only this first nonzero
term is significant because x = h/R will be extremely small, so this expression gives
the acceleration due to gravity near the planet’s surface.

gP =
GM

R2
. (34)

In the case of Earth, one can for example show that by using this term to compute the
acceleration due to gravity, the quantity GME/R

2
E gives a value very close to g, where

ME is the Earth’s mass, and RE is the Earth’s radius. In other words, one can predict
the acceleration due to gravity near the Earth’s surface using its mass and its radius!
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(c) Alice is on planet A whose mass is ME/2 and whose radius is RE. Bob is on planet B
whose mass is

√
3ME and whose radius is

√
2RE.

Alice throws a ball at a speed v at a certain angle relative to the ground that maximizes
the range of the thrown object. Bob throws a ball at speed

√
2v and at an angle θ

relative to the ground, and the ball ends up having the same range as Alice’s ball.

At what angle θ did Bob throw the ball?

Solution.

(a) The x- and y-positions of a projectile as a function of time are

x = v cos θt, y = v sin θt− 1

2
gP t

2 (35)

The projectile strikes the ground when y = 0. Using this condition in the y-equation
gives a unique nonzero time which is the time at which the projectile strikes the ground
after having flown along a parabola:

t =
2

gP
v sin θ. (36)

Plugging this into the x-equation gives the desired expression for the range:

rP =
v2

gP
(2 cos θ sin θ) =

v2

g
sin(2θ) . (37)

(b) Using the definition x = h/R, we have

a =
GM

R2
(1 + x)−2 (38)

To determine the Taylor expansion of this expression about x = 0, we notice that

(1 + x)−2
∣∣
x=0

= 1 (39)

d

dx
(1 + x)−2

∣∣
x=0

= −2 (40)

d2

dx2
(1 + x)−2

∣∣
x=0

= 6 (41)

so by Taylor’s formula we have

a =
GM

R2

(
1

0!
+

(−2)x

1!
+

6x2

2!
+ · · ·

)
=

GM

R2
(1− 2x+ 3x2 + · · · ) . (42)
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(c) Using the range formula from part (a), we can compare the ranges of the balls thrown
by Alice and Bob:

rA
rB

=
(v2A/gA) sin(2θA)

(v2B/gB) sin(2θB)
=
v2A
v2B

gB
gA

sin(2θA)

sin(2θB)
(43)

Since the Alice throws at a range-maximizing angle, we have θA = π/4 so sin(2θA) = 1.
Since the ranges are the same, rA/rB = 1. We also see from the information in the
problem that

v2A
v2B

=
v2

2v2
=

1

2
. (44)

and

gB
gA

=
GMB/R

2
B

GMA/R2
A

=
MB

MA

R2
A

R2
B

=

√
3ME

ME/2

R2
E

2R2
E

=
2
√

3

2
(45)

Putting all of these facts together gives

1 =
1

2

2
√

3

2

1

sin(2θB)
(46)

Hence, we find that

sin(2θB) =

√
3

2
(47)

which implies 2θB = π/3 and therefore θB = π/6 .
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