MT2 Physics 1A F17

Full Name (Printed)

Full Name (Signature)

Student ID Number

Seat Number

Problem	Grade	
1	20	/30
2	26	/30
3	00	/30
Total	45	/90
	(11)	13

- Do not peek at the exam until you are told to begin. You will have approximately 50 minutes to complete the exam.
- Don't spend too much time on any one problem. Solve 'easy' problems first. Go for partial credit!
- HINT: Focus on the concepts involved in the problem, the tools to be used, and the set-up. If you get these right, all that's left is algebra.
- Have Fun!

1) A block (M_1) is launched from a spring to travel over a horizontal surface that is frictionless apart from a small patch of length d and coefficient μ_k . After traveling over the patch, the block makes an elastic collision with a point-mass (m_2) hung at rest from a string of length L. Following the collision, the block reverses direction and comes to rest in the friction patch (without having returned to the spring).

• 1a) (10 points) Compare the velocity of M_1 after it strikes the point-mass to the velocity of M_1 before it strikes the point-mass. Compare the mass of M_2 to the mass of M_1 .

Viafter and Vibefore have different direction

| Viafter | < | Vibefore |, because the kinetic energy of Mi red

| ZMINIDER = \frac{1}{2}MIN.ofter + \frac{1}{2}M2\fore \frac{1}{2} + \frac{1}{2}M2\fo

1b) (15 points) Given what you know about where the block comes to rest, find the range of angles (measured with respect to the vertical, as shown) to which the point-mass may rise.
= M. V. afer < LUM, g.d ! Viafer < ZMgd, Viafer < Jango
= M2/2 = M29 (L- L1050) +2
$(1 - (0)\theta) = \frac{1}{2} \frac{V_{2}^{2}}{g^{2}}, 1 - (0)\theta = \frac{V_{2}^{2}}{2gL}, (0)\theta = \frac{V_{2}^{2}}{2gL}$
- VINTON A VINTON
Vibefore - Viafter - Ni, Videfor - Ni, Vigfer = N/2 Vibefore + NoVa
Vibefor = Viafer (MetMi) Vibefor (MMe) = Viafter (MetMi)
1. Vibefor = Viater (MitMi) < JZING of MI+MZ MI-MZ
1 V2=Vibefore + Viafter < J2MgJ (1+ M+M2)+5
(0,0) 1- 219d (+ Mi+M2) 2 (5) - Md (+ Mi+M).
27L +2L)
1c) (5 points) Use a (linear) approximation to simplify the answer to part b in the event that θ is small and briefly discuss the effects μ_k , L, d and M_1 have on θ .

L higger, O smaller V

·			
	,		

- 2) A demo-dog (mass M_1 , initial velocity \vec{V}_0) is in heated pursuit of one of the slower, meatier, members of the Hawkins Middle School AV Club. Before it can catch up to its prey, it collides with a stationary trash can of mass M_2 . After the collision, the demo-dog moves with a speed V_1 , deflected by an angle θ_1 from its initial path (as shown).
 - How fast was the trash can moving and in what direction (relative to the demo-dog's • 2a) (15 points) initial velocity) after the collision?

conservation of momentum: M.Vo = M.V. (050, + M2V210502 $\Phi P = M_1 V_1 \sin \theta_1 + M_2 V_2 \sin \theta_2$ $V_2 \sin \theta_2 = \frac{M_1 V_1 \sin \theta_1}{M_2}$ $V_{2}(0)$ $\theta_{2} = M_{1}V_{0} - M_{1}V_{1}(0)$ $\tan \theta_2 = \frac{-M_1 V_1 \sin \theta_1}{M_1 V_0 - M_1 V_1 \cos \theta_1} = \frac{-V_1 \sin \theta_1}{V_0 - V_1 \cos \theta}$

= (V2 5hQ2)= (105Q2)= MiV,25in20,+MiV3+MiV3+MiV31030

m 2 V12+M2v3-2M, VM, V, 1000 M, Withito - 2 M. Vo M.V. 1050

• 2b) (10 points) By what fraction of the demo-dog's initial energy did the total energy of the system (demo-dog + trash can) change?

K dog
$$i = \frac{1}{2}M_1V_0^2$$

We are look by for

$$\frac{1}{2}M_1V_0^2 - \frac{1}{2}M_1V_1^2 - \frac{1}{2}M_2V_2^2$$

$$\frac{1}{2}M_1V_0^2 - \frac{1}{2}M_1V_1^2 - \frac{1}{2}M_2V_2^2$$

$$\frac{1}{2}M_1V_0^2 - \frac{1}{2}M_1V_0^2 - \frac{1}{2}M_1$$

• 2c) (5 points) While in principle, the answer to b would seem to allow for the possibility of an elastic collision, the likelihood of that happening is essentially nil - collisions with trash cans are generally noisy, messy affairs. What would your answer to part b look like if the collision was elastic, and how does nature manage to avoid this condition?

it would be zero / according to math *3 vo'- Vi2- M. Vi2- M. vo' +2 vo m. V. rosa & O

Vo2- Vi2- MIVI2-MIVO2+2VOMIV, COS D

- 3) A cylindrical pulley, described by the (known) parameters M, R and I_{cm} turns without slipping over a massless rope that is tied to a fixed hook on one end and held by a hand on the other. The hand exerts a force F_{ext} on the rope as the pulley is lowered. You may assume that the segments of rope that appear to be vertical in the diagram are, indeed, vertical.
 - 3a) (5 points) Show that the tangential acceleration for points on the rim of the pulley is equal in magnitude to the acceleration of the center-of-mass of the pulley in the ground frame of reference.

• 3b) (10 points) What is the acceleration of the center of mass of the pulley?

		·	
	-		

• 3c) (10 points) How much force does the rope exert on the hook?

ullet 3d) (5 points) What happens to the answers in parts b and c if I_{cm} is very large? Explain.

		÷	
	-		
•			
	•		
		,	
•			