
## Problem 1

In a carnival booth, you win a stuffed giraffe if you toss a quarter into a small dish. The dish is on a shelf above the point where the quarter leaves your hand and is a horizontal distance of s meters from this point (see figure). If you toss the coin with a velocity of  $\vec{v}$  at an angle of  $\alpha$  degrees above the horizontal, the coin lands in the dish. You can ignore air resistance.

- a) What is the height of the shelf above the point where the quarter leaves your hand?
- b) What is the vertical component of the velocity of the quarter just before it lands in the dish?



## Problem 2

A particle of mass m is falling vertically in a gravitational field. The retarding force applied on the particle is *proportional* to its velocity. Given that the particle's initial position and velocity (at t = 0) are h and  $v_0$ , find the velocity and displacement (at  $t \neq 0$ ). You might find the following integrals useful:  $\int \frac{1}{a+x} dx = \ln(a+x) + \text{const.}$  and  $\int e^{ax} dx = \frac{1}{a} e^{ax} + \text{const.}$ 

and 
$$\int e^{\alpha x} dx = \frac{1}{a}e^{\alpha x} + const.$$

Let  $\int e^{\alpha x} dx = \frac{1}{a}e^{\alpha x} + const.$ 

Let  $\int e^{\alpha x} dx = \frac{1}{a}e^{\alpha x} + const.$ 

Let  $\int e^{\alpha x} dx = \frac{1}{a}e^{\alpha x} + const.$ 

Let  $\int e^{\alpha x} dx = \frac{1}{a}e^{\alpha x} + const.$ 

Let  $\int e^{\alpha x} dx = \frac{1}{a}e^{\alpha x} + const.$ 

Let  $\int e^{\alpha x} dx = \ln(a + x) + const.$ 

Let  $\int e^{\alpha x} dx = \ln(a + x) + const.$ 

Let  $\int e^{\alpha x} dx = \ln(a + x) + const.$ 

Let  $\int e^{\alpha x} dx = \ln(a + x) + const.$ 

Let  $\int e^{\alpha x} dx = \ln(a + x) + const.$ 

Let  $\int e^{\alpha x} dx = \ln(a + x) + const.$ 

Let  $\int e^{\alpha x} dx = \ln(a + x) + const.$ 

Let  $\int e^{\alpha x} dx = \ln(a + x) + const.$ 

Let  $\int e^{\alpha x} dx = \ln(a + x) + const.$ 

Let  $\int e^{\alpha x} dx = \ln(a + x) + const.$ 

Let  $\int e^{\alpha x} dx = \ln(a + x) + const.$ 

Let  $\int e^{\alpha x} dx = \ln(a + x) + const.$ 

Let  $\int e^{\alpha x} dx = \ln(a + x) + const.$ 

Let  $\int e^{\alpha x} dx = \ln(a + x) + const.$ 

Let  $\int e^{\alpha x} dx = \ln(a + x) + const.$ 

Let  $\int e^{\alpha x} dx = \ln(a + x) + const.$ 

Let  $\int e^{\alpha x} dx = \ln(a + x) + const.$ 

Let  $\int e^{\alpha x} dx = \ln(a + x) + const.$ 

Let  $\int e^{\alpha x} dx = \ln(a + x) + const.$ 

Let  $\int e^{\alpha x} dx = \ln(a + x) + const.$ 

Let  $\int e^{\alpha x} dx = \ln(a + x) + const.$ 

Let  $\int e^{\alpha x} dx = \ln(a + x) + const.$ 

Let  $\int e^{\alpha x} dx = \ln(a + x) + const.$ 

Let  $\int e^{\alpha x} dx = \ln(a + x) + const.$ 

Let  $\int e^{\alpha x} dx = \ln(a + x) + const.$ 

Let  $\int e^{\alpha x} dx = \ln(a + x) + const.$ 

Let  $\int e^{\alpha x} dx = \ln(a + x) + const.$ 

Let  $\int e^{\alpha x} dx = \ln(a + x) + const.$ 

Let  $\int e^{\alpha x} dx = \ln(a + x) + const.$ 

Let  $\int e^{\alpha x} dx = \ln(a + x) + const.$ 

Let  $\int e^{\alpha x} dx = \ln(a + x) + const.$ 

Let  $\int e^{\alpha x} dx = \ln(a + x) + const.$ 

Let  $\int e^{\alpha x} dx = \ln(a + x) + const.$ 

Let  $\int e^{\alpha x} dx = \ln(a + x) + const.$ 

Let  $\int e^{\alpha x} dx = \ln(a + x) + const.$ 

Let  $\int e^{\alpha x} dx = \ln(a + x) + const.$ 

Let  $\int e^{\alpha x} dx = \ln(a + x) + const.$ 

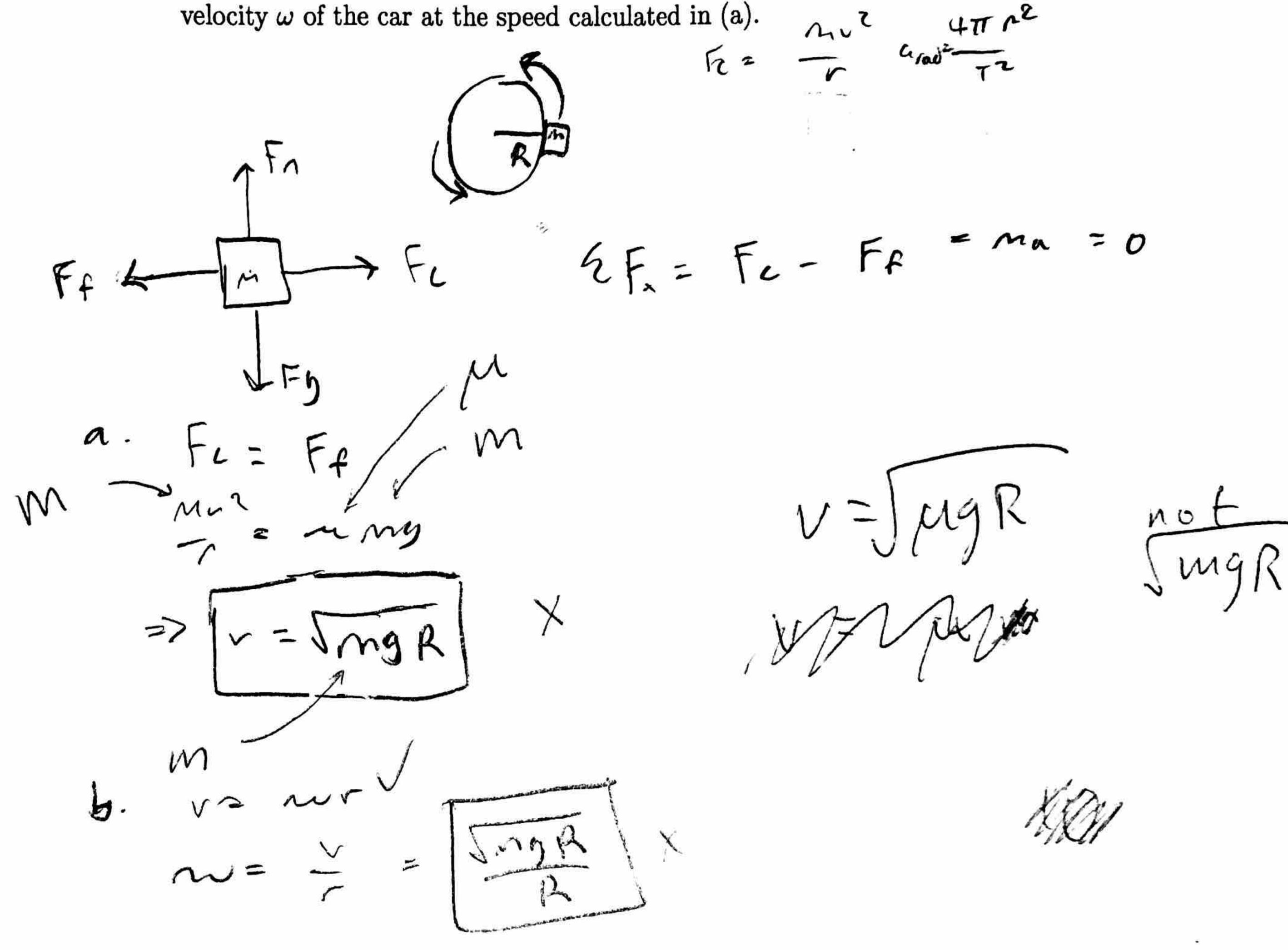
Let  $\int e^{\alpha x} dx = \ln(a + x) + const.$ 

Let  $\int e^{\alpha x} dx = \ln(a + x) + const.$ 

Let  $\int e^{\alpha x} dx = \ln(a + x) + const.$ 

Let  $\int e^{\alpha x} dx = \ln(a + x) + const.$ 

Let  $\int e^{\alpha x} dx = \ln(a + x) + const.$ 


Let  $\int e^{\alpha x} dx = \ln(a + x) + const.$ 

Let  $\int e^{\alpha x} dx = \ln(a + x) + const.$ 

Let  $\int e^$ 

## Problem 3

A car of mass m is traveling around a flat circular race track of radius R. The static coefficient of friction between the tire and the road (against transverse motion) is  $\mu$ . (a) How fast can the car travel before it starts to skid? (b) What is the angular velocity  $\omega$  of the car at the speed calculated in (a).



Write more Clearly