Problem 2 (40 points):

A particle of mass m is free to move along the y-axis. The particle is subjected to a conservative force described by the potential energy function

$$U(y) = a(y-b)^2 - cy$$

where y is the coordinate of the particle and a, b, and c are positive constants. For this problem, assume that only this conservative force does work on the particle.

Part A (10 points): Find the equilibrium position of this particle in terms of the constants *a*, *b*, and *c* and state whether this is a stable or unstable equilibrium.

Equilibrium
$$dU = 0$$

$$dV = 2a(y-b) - C$$

$$dy$$

$$0 = 2a(y-b) - C$$

$$C + b = y$$

$$2a$$

$$\frac{d^2U}{dy^2}$$
 = 29 > 0 ... The equilibrium is stable at $y = b + \frac{C}{29}$ //