Part A (10 points): Determine the minimum height h from which the block must be released so that it completes the loop without falling off. Express your answer in terms of R.

The me

At the top of the loop,

$$\vec{V} = V_{min} \rightarrow |\vec{N}| = 0$$

Frad = $Mg = MV^2$
 $V = \sqrt{Rg}$

Emech is conserved: Emech is conserved:

$$U_i + K_i + W_i = K_f + U_f$$
 $W_i + K_i = K_f + U_f$
 $W_i + K_i = U_f + U_f$
 $W_i + W_i = U_f + U_f$
 $W_i + U_f + U_f + U_f$

E mech is conserved:

$$Ui + Ki^{0} = U + Kf$$

$$mgh = \frac{1}{2}m(\sqrt{Rg})^{2} + mg(2R)$$

$$prgh = Rmg + 2Rmg$$