Final Exam

Prof. G.J. Morales

### Problem #1 - 10 points

Consider a uniform line charge carrying a total amount of charge q and consisting of one quarter of a circle of radius R, as shown below





a) What is the line charge density  $\lambda$  of this configuration?

(2 points)

b) Calculate the electrostatic potential  $\phi$  at the origin  $\underline{0}$  (the center of the circle).

(3 points)

c) Calculate the electric field vector  $\underline{E}$  at  $\underline{0}$ . answer in terms of the unit vectors  $\hat{x}, \hat{y}$ . Express answer

(5 points)

# Problem #2 - 12 points

shown below An electric dipole  $\underline{p} = p\,\hat{y}$  is located at a distance d from a positive point charge q, as



X>

The direction of  $\underline{p}$  is a right-angles to the line connecting the charge.

a) Find the torque vector  $\underline{\tau}$  experienced by the dipole.

(4 points)

b) Find the force vector  $\underline{F}$  acting on the dipole.

- (5 points)
- c) How much work W is required to bring the +q charge from  $\infty$ to its location in the figure.
  - (3 points)

### Problem #4 - 20 points

The inner surface of the electret is located at r = b from  $\lambda$ , as indicated below electret material whose polarization vector is  $\underline{P} = -P_0\hat{r}$ , with  $P_0$  a positive constant.  $\epsilon$  and whose inner surface is at a distance r = a from  $\lambda$ . thickness t. r=0. It is surrounded by two infinitely long concentric cylindrical shells, both having An infinitely long line of free charge having line density  $\lambda$  (Coulomb/meter) is located at The inner shell is a normal dielectric material having dielectric coefficient The outer shell consists of an



- a) Find the displacement vector  $\underline{D}$  at an arbitrary radius r
- (5 points)
- **b**) Find the bound surface charge density  $\sigma_b$  on the outer surface of the dielectric shell (i.e., at r = a + t).
  - (5 points)
- 0 Find the bound charge density  $\rho_b$  at a point r inside the electret.
- (5 points)

d) Find the electric field  $\underline{E}$  at a point r inside the electret.

(5 points)

### Problem #3 - 10 points

local normal vector, as shown below of an interface with a material having dielectric coefficient  $\epsilon$  makes an angle  $\theta$  with the It is found that in the absence of free charges the electric field  $\underline{E}_0$  on the vacuum side



- a) Find the angle  $\alpha$  that the electric field vector  $\underline{E}_1$  on the dielectric side makes with the local normal.
  - (5 points)
- b) Find the ratio of the electric field energy density on the material side to that on the vacuum side.
  - (5 points)

### Problem #5 - 13 points

have an azimuthal variation given by The potential on the surface of an infinitely long cylinder of radius a is prescribed to

$$\phi(r=a,\theta) = \phi_0 \cos 3\theta$$

A second infinitely long cylinder of radius b, and concentric with the inner one, is grounded, as indicated below



- 2) Find the potential  $\phi(r,\theta)$  at a radius r between the two cylinders, i.e., a < r < b.

(8 points)

**b**) Find the surface charge induced on the grounded cylinder.

(5 points)

# Problem #7 - 15 points

A slab (current sheet) extending from -a to +a in the z-direction and infinite along the x and y-directions carries a uniform current density  $\underline{j} = j\hat{x}$ , as shown below



Find the magnetic field vector  $\underline{B}$  for a point z inside and outside the slab.

# Problem #8 - 10 points

An electric charge distribution produces an electric field

$$\underline{E} = c(1 - e^{-\gamma r}) \frac{\hat{r}}{r^2}$$

Find the net charge within the radius  $r = 1/\gamma$ . where c and  $\gamma$  are constants and r is the radical spherical coordinate.