Math 61: Introduction to Discrete Structures
Midterm #1

Instructor: Spencer Unger

October 27, 2014
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1. (20 points) Show that for all n > 1, 8" — 3" is divisible by 5. \
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2. (20 points)

/ (a) Throughout this problem use following sets:
’E} ,/ﬁ)

A={reR|-3<|z] <17}
B={yeZ|-5<y<10} (-7, 1c)
C={z € R|2* <100} [40//03
D={weR|w< -9} (((X]/,ﬁ“)
E ={n €/N)|n®+1is even }

For each of the following statements determine whether it is true or false. Just
write T or F for each.
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Parts (b) and (c) on the next page.



(b) Let T = {(m,n) e Nx N| 10 <m < 10 and —10 < n < 10} and § = {(m,n) €
N x N | m? 4+ n? < 100}. Is it true that S = T'? Justify your answer.
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(c) Let X be a finite set. Give the definitions of both P(X) (the powerset of X) and
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(b) Let T = {(m,n) e Nx N| =10 <m < 10 and —10 < n < 10} and § = {(m,n) €
N x N | m? + n? <100}. Is it true that S = T? Justify your answer.
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(c) Let X be a finite set. Give the definitions of both P(X) (the powerset of X) and
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3. (10 points) Let f: N x R — R be given by F(n, z) =nz.

(a) Is f one-to-one? Justify your answer.
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4. (10 points) Recall that for a real number z, |z] is the greatest integer less than or
equal to z. Define a function g : R — R by the formula g(z) = Lm-i— %J From a
homework problem we know that the relation R on R given by (z,y) € R exactly when

g(z) = g(y) is an equivalence relation. (You don’t need to show this.) Answer the
following questions:

(a) Graph the function g on the interval [0, 4].
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(b) The equivalence class of 3, [3] is an interval on the real line. Which interval is it?
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5. (20 points) Given two strings a and [ we say that « is an initial segment of § if there
is a string 7 such that ay = 8. Recall that ary is the concatenation of @ and 7. For
example 011 is an initial segment of 01101, but 10 is not an initial segment of 11010.

Let X be the set oﬂ);narf strings of length Define a relation R on X by
(a, B) exactly when « is an initial segment of 5. Answer the following questions about
R. Be sure to justify your answers.

(a) Is R reflexive? (Hint: There is a string of length 0, an empty string.)

_Stjrf/ [;" fl’\j )A[irlr-) G & X/

(; Q\ = (1 w
1 4
é/"\[“" ‘! A n%

(b) Is R symmetric?
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\ j( 6. (20 points) Work with a standard deck of cards. Recall that there are 52 cards and
each card has a suit ({, ©, &, #) and a face value (1,2,3,4,5,6,7,8,9,10,J,Q, K). All
combinations of suits and face values are possible.

This problem will have you count the number of 5 card hands that have exactly 2 cards
with face value 5 or exactly 3 cards with face value J. For full credit please state
any counting rules or principles that you use. You do not need to simplify
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(a) Count the number of 5 card hands with exactly 2 cards of face value 5.
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(b) Count the number of 5 card hands with exactly three cards with face value J. (A
()49 wllflicdion poncl

(¢) Using your previous answer count the number of 5 card hands with exactly 2 cards
of face value 5 or exactly 3 cards which have face value J. (Hint 1: Your count
should include the hands that have exactly 2 cards with face value 5 and exactly 3
cards with face value J. Hint 2: Be carefull)

"N
\

. \ ] \ ; H . )
y | N ((_ N\ /ft/ A & > {/ 1 /\
¢ k% 3/Le ) el



