Q1

5 Points

Consider the recursion relation

$$a_n = 9a_{n-1} - 20a_{n-2}$$

for n greater than or equal to 2, with the following initial conditions:

$$a_0 = 3$$

$$a_0 = 3$$
$$a_1 = 13$$

with initial conditions $a_0 = 3$ and $a_1 = 13$.

Q1.1 Recurrence Relation

1 Point

Find the roots of the auxiliary polynomial. Enter the smaller one in the following box.

4

Q1.2

1 Point

Now enter the larger of the two roots in the following box:

5

Q1.3

1 Point

Let r_1 denote the smaller of the two roots of the auxiliary polynomial and let r_2 denote the larger of the two roots.

We know from class that the solution to the recurrence relation subject to the initial conditions has the form $c (r_1)^n + d (r_2)^n$.

What is c?

Q1.4

1 Point

What is d?

1

Q1.5

1 Point

Use the formula you found for the solution to calculate a_5 (give a numerical answer).

5173

Q2 Graph

5 Points

Let G = (V,E) be a simple graph defined as follows: the vertex set V is the set $\{1,2,...,13\}$, and for any vertices v and w, there is an edge between v and w if and only if exactly one of v and w is even (and the other is odd).

Q2.1 Graph

2.5 Points

Is G bipartite?

• Yes, it is bipartite

Tes, it is sipartif

O No, it is not

Q2.2

2.5 Points

How many edges does G have?

42

Quiz 5

STUDENT

David Xiong

TOTAL POINTS

10 / 10 pts

QUESTION 1

QUESTION 1			
(no title)		tle)	5 / 5 pts
	1.1	Recurrence Relation	1 /1 pt
	1.2	(no title)	1 / 1 pt
	1.3	(no title)	1 / 1 pt
	1.4	(no title)	1 / 1 pt
	1.5	(no title)	1 / 1 pt

QUESTION 2

Graph 5 / 5 pts

2.1 Graph
 2.5 / 2.5 pts
 2.2 (no title)
 2.5 / 2.5 pts