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MATH 61 - MIDTERM EXAM 1

0.1. Instructions. This is a 50 minute exam. You should feel free to quote any
theorems proved in class, as well as anything proved in the homework or discussion
section. There are 7 questions——on the real exam, you are required to do the first
true/false question, and choose 5 of the remaining 6. Only 5 problems other than
the true/false question will be graded so you should indicate which problems you
want graded, in the case that you attempt all 6. Bach question is worth 10 points.
Unless otherwise specified, you are required to justify your answers.

Exercise 0.1. Indicate whether the following statements are true or false. You do
not need to justify your answer. '
(1) If f: X =Y and g: Y — Z are one-to-one functions, then (go f): X 2 Z

is one-to-one.
QUEf:X—=Yandg:Y = 7 are onto functions, then (go f): X = Z is

onto.
 (3) ¥ R is a relation on X, then R is symmetric if and only if R = R~L.
If R is a reflexive relation on X, then R is transitive if and only if RoR = R.

If X is a subset of ¥ then X and Y are not disjoint.
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Exercisé 0.2. Show that for all natural numbers 7,
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Exercise 0.3. If By, B2, C1, Cq are sets and B; C C; and By C Cg then
B1UBs C Oy U Cs.
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that n2 — Tn-+13 is nonnegative for all natural numbers 7 > 3.

4
Exercise 0.4. Show
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Exercise 0.5. Let f: X — Y be a function. Given any subset S C X , we write

F(S) for the set defined as follows:
F8)={ye Y : there is s € S such that fls) =y}

(1) Show that F(SNT) € J(S) N F(T).
(2) Show that if f is injective, then f(SNT) = £(8) N f(I)-
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Exercise 0.6. Suppose X and Y are sets.
(1) Suppose E1 and E, are equivalence relations on X and Y respectively.

Define a relation Eon X xY by
(z1,11)B(z2,y2) <> z1E172 and y1Eays.

Show F is an equivalence relation.
(2) Let S be the set of equivalence classes of E. Show that

S={z]lg x Wz, :z€X,y€ Y},

where [z]g, is the equivalence class of & with respect to the equivalence
relation By and [y]m, is the equivalence class of ¢ with respect to the equiv-

alence relation E.
1) symmedeyn AR Cr v D B Oy Nen X % and .Y-E1V1, Bocawsy Lo, Eu are in“~‘5k{””3
OB ed wEY 80 (oY) E(v,y)

v 5% and Y EY, 50 (x,,y) £ (x,y.) )

YE Gy, tha XE % 6ad VE Y. ard X EX asd

\a*b"S, xiE‘)@ and \/rEZ\/g) S0 (X.,‘/;}E(«Vs,'yz,}

ﬁ,_-mu'-v(’, ,
"hOl".’.i‘v'\I ;V(‘;/‘ _I‘{‘ ()‘I ;Y') \::“ (XL;}[!—) C""(‘E}‘ (XI)YL

L §, Yo, 50 ecause E., by ove 2quw wlal
RN L S 47" -

'l\ LQS( G & S Ge c\rl;;“\rO.rY



Nucthon MidK'€E
20447959
(6 ca (Jﬂ_[ ‘ )
e MATH 61 - MIDTERM EXAM 1 ' 7

Exercise 0.7. Define a sequence by #; = 2 and i, = HE:ll ¢; for all § > 2. Define

an additional sequence by s, = Y i, ;. Calculate s3 and f4.
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