
Midterm 1 Solutions

1. (5 points) If a and b are in Z, then we say that a is divisible by b if there exists
an integer k with a = kb. Show 5n − 1 is divisible by 4 for all n ≥ 1.

Induction: For n = 1, 5n − 1 = 4 which is divisible by 4.

n implies n + 1:

5n−1 − 1 = 5n(5)− 1 = (5n − 1) + 5n(4).

By the induction hypothesis, there exists an integer k so that

(5n − 1) + 5n(4) = (4)k + 5n(4) = 4(k + 5n).

So 5n+1 − 1 is divisible by 4.

2. (5 points) Show that n! ≥ 2n−1 for all n ≥ 1.

Induction: For n = 1, both sides of the inequality are 1,

n implies n + 1:

(n + 1)! = (n + 1)n! ≥ (n + 1)2n−1

by the induction hypothesis. Since n ≥ 1,

(n + 1)2n−1 ≥ (2)2n−1 = 2n.

So (n + 1)! ≥ 2n.
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3. (5 points) Let A ⊂ X. Show that X \ (X \ A) = A.

x ∈ X \ (X \ A)⇔
x /∈ X \ A⇔

x ∈ A

4. (5 points) Define f : Z→ {0, 1} as

f(n) =

{
1 if n is odd,

0 if n is even.

Is f one-to-one? Is f onto? (prove your answer)

f(0) = f(2) = 1, so f is not one-to-one.

f(0) = 1 and f(1) = 0, so f is onto.

5. (a) (5 points) Let f : X → Y . Define a relation on X, x1 ∼ x2 if f(x1) = f(x2).
Show that this is an equivalence relation.

To show that this relation is an equivalence relation, we need to show that
it is reflexive, symmetric and transitive.

Reflexive: Let x ∈ X, then f(x) = f(x). So x ∼ x.

Symmetric: Let x1, x2 ∈ X and suppose x1 ∼ x2. Then f(x1) = f(x2) and
therefore f(x2) = f(x1). So x2 ∼ x1.

Transitive: Let x1, x2, x3 ∈ X and suppose x1 ∼ x2 and x2 ∼ x3. Then
f(x1) = f(x2) and f(x2) = f(x3). So f(x1) = f(x3) and x1 ∼ x3.

(b) (5 points) Using f from Problem 4, describe the equivalence classes on Z
defined by part (a). How many equivalence classes are there?
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Using f in problem 4 we see that n ∼ m in Z if either n and m are both
even or n and m are both odd. So there are two equivalence classes:

[0] = {n ∈ Z : n is even}

and

[1] = {n ∈ Z : n is odd}.

6. (5 points) Let letters A,B,C,D,E,F,G be used to form strings of length 4. How
many strings of length 4 with repetitions contain A and B. How about without
repetitions?

With repetitions: Let X be the set of strings that contain A and let Y be the
set of strings that contain B. We want to compute X ∩ Y . Using the inclusion
exclusion principle,

|X ∪ Y | = |X|+ |Y | − |X ∩ Y |.

So instead let us compute the other terms in the equation. There are 74 total
strings and there are 54 strings that contain neither A nor B. So

|X ∪ Y | = 74 − 54.

There are 64 strings do not contain A so

|X| = 74 − 64.

Similarly,

|Y | = 74 − 64.

So

|X ∩ Y | = (2)(74 − 64)− (74 − 54).

Without repetitions: Choose two places for A and B, there are 4 choices for
where to place A and then 3 choices for where to place B. In the remaining two
places there are 5 choices for the first letter and 4 choices for the second letter.
So there are

(4)(3)(5)(4)

total strings.
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7. Consider strings of length 8 made up of elements in {0, 1}.
(a) (3 points) How many strings contain 000 as a substring?

We count instead how many strings don’t contain 000. Call this S8. Any
string must end with 1,10, or 100. So

S8 = S7 + S6 + S5.

This recursion works for shorter length strings as well.

S8 = (S6 + S5 + S4) + S6 + S5 = 2S6 + 2S5 + S4

= 2(S5 + S4 + S3) + 2S5 + S4 = 4S5 + 3S4 + 2S3

= 4(S4 + S3 + S2) + 3S4 + 2S3 = 7S4 + 6S3 + 4S2.

We can now compute each of these terms. S4 is the number of strings
without 000. These are everything but:

0000, 0001, 1000.

So |S4| = 24 − 3 = 13. Similarly, |S3| = 23 − 1 = 7 and |S2| = 22 = 4. So

|S8| = (7)(13) + (6)(7) + (4)(4) = 149.

So the answer is 256− 149 = −107.

(b) (3 points) How many strings contain three 0’s?

(
8

3

)
+

(
8

4

)
+

(
8

5

)
+

(
8

6

)
+

(
8

7

)
+

(
8

8

)

(c) (4 points) How many string contain more 0’s than 1’s?

(
8

5

)
+

(
8

6

)
+

(
8

7

)
+

(
8

8

)
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8. Let S ⊂ N be a set. An element l ∈ S is called the least element in S if for all
s ∈ S, l ≤ s. Let also Ak = {n ∈ N : n ≤ k}.
(a) (5 points) Prove by induction that Ak either contains l (the least element

of S) or Ak ∩ S = ∅.

For k = 1: A1 = {1}. If 1 ∈ S, then it is the least element since 1 is
the least element in N. If 1 /∈ S, then A1 ∩ S = ∅.
k implies k + 1: By the induction hypothesis either Ak ∩ S = ∅ or l ∈ Ak.
If l ∈ Ak, then l ∈ Ak+1.

If Ak ∩ S = ∅ and Ak+1 ∩ S 6= ∅, then k + 1 ∈ S. Suppose there is an s ∈ S
so that s < k + 1. Then s ∈ Ak and this would contradict our assumption.
So k + 1 = l and l ∈ Ak+1. Otherwise Ak+1 ∩ S = ∅.

(b) (5 points) Show that if S is nonempty, then S has a least element (hint:
use (a)).

Since S is nonempty there exists an element k ∈ S and so k ∈ Ak. Therefore
S ∩ Ak 6= ∅. By (a), l ∈ Ak and thus S has a least element.
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