Midterm 1 Solutions

1. (5 points) If a and b are in \mathbb{Z} , then we say that a is divisible by b if there exists an integer k with $a = kb$. Show $5ⁿ - 1$ is divisible by 4 for all $n \ge 1$.

Induction: For $n = 1$, $5ⁿ - 1 = 4$ which is divisible by 4. n implies $n + 1$:

$$
5^{n-1} - 1 = 5^{n}(5) - 1 = (5^{n} - 1) + 5^{n}(4).
$$

By the induction hypothesis, there exists an integer k so that

$$
(5n - 1) + 5n(4) = (4)k + 5n(4) = 4(k + 5n).
$$

So $5^{n+1} - 1$ is divisible by 4.

2. (5 points) Show that $n! \geq 2^{n-1}$ for all $n \geq 1$.

Induction: For $n = 1$, both sides of the inequality are 1, n implies $n + 1$:

$$
(n+1)! = (n+1)n! \ge (n+1)2^{n-1}
$$

by the induction hypothesis. Since $n \geq 1$,

$$
(n+1)2^{n-1} \ge (2)2^{n-1} = 2^n.
$$

So $(n + 1)! \geq 2^n$.

3. (5 points) Let $A \subset X$. Show that $X \setminus (X \setminus A) = A$.

$$
x \in X \setminus (X \setminus A) \Leftrightarrow
$$

$$
x \notin X \setminus A \Leftrightarrow
$$

$$
x \in A
$$

4. (5 points) Define $f: \mathbb{Z} \to \{0,1\}$ as

$$
f(n) = \begin{cases} 1 & \text{if } n \text{ is odd,} \\ 0 & \text{if } n \text{ is even.} \end{cases}
$$

Is f one-to-one? Is f onto? (prove your answer)

- $f(0) = f(2) = 1$, so f is not one-to-one. $f(0) = 1$ and $f(1) = 0$, so f is onto.
- 5. (a) (5 points) Let $f: X \to Y$. Define a relation on $X, x_1 \sim x_2$ if $f(x_1) = f(x_2)$. Show that this is an equivalence relation.

To show that this relation is an equivalence relation, we need to show that it is reflexive, symmetric and transitive. Reflexive: Let $x \in X$, then $f(x) = f(x)$. So $x \sim x$. Symmetric: Let $x_1, x_2 \in X$ and suppose $x_1 \sim x_2$. Then $f(x_1) = f(x_2)$ and therefore $f(x_2) = f(x_1)$. So $x_2 \sim x_1$. Transitive: Let $x_1, x_2, x_3 \in X$ and suppose $x_1 \sim x_2$ and $x_2 \sim x_3$. Then $f(x_1) = f(x_2)$ and $f(x_2) = f(x_3)$. So $f(x_1) = f(x_3)$ and $x_1 \sim x_3$.

(b) (5 points) Using f from Problem 4, describe the equivalence classes on $\mathbb Z$ defined by part (a). How many equivalence classes are there?

Using f in problem 4 we see that $n \sim m$ in Z if either n and m are both even or n and m are both odd. So there are two equivalence classes:

$$
[0] = \{ n \in \mathbb{Z} : n \text{ is even} \}
$$

and

$$
[1] = \{ n \in \mathbb{Z} : n \text{ is odd} \}.
$$

6. (5 points) Let letters A,B,C,D,E,F,G be used to form strings of length 4. How many strings of length 4 with repetitions contain A and B. How about without repetitions?

With repetitions: Let X be the set of strings that contain A and let Y be the set of strings that contain B. We want to compute $X \cap Y$. Using the inclusion exclusion principle,

$$
|X \cup Y| = |X| + |Y| - |X \cap Y|.
$$

So instead let us compute the other terms in the equation. There are $7⁴$ total strings and there are $5⁴$ strings that contain neither A nor B. So

$$
|X \cup Y| = 7^4 - 5^4.
$$

There are $6⁴$ strings do not contain A so

$$
|X| = 7^4 - 6^4.
$$

Similarly,

$$
|Y| = 7^4 - 6^4.
$$

So

$$
|X \cap Y| = (2)(7^4 - 6^4) - (7^4 - 5^4).
$$

Without repetitions: Choose two places for A and B , there are 4 choices for where to place A and then 3 choices for where to place B . In the remaining two places there are 5 choices for the first letter and 4 choices for the second letter. So there are

$$
(4)(3)(5)(4)
$$

total strings.

- 7. Consider strings of length 8 made up of elements in {0, 1}.
	- (a) (3 points) How many strings contain 000 as a substring?

We count instead how many strings don't contain 000. Call this S_8 . Any string must end with 1,10, or 100. So

$$
S_8 = S_7 + S_6 + S_5.
$$

This recursion works for shorter length strings as well.

$$
S_8 = (S_6 + S_5 + S_4) + S_6 + S_5 = 2S_6 + 2S_5 + S_4
$$

= 2(S_5 + S_4 + S_3) + 2S_5 + S_4 = 4S_5 + 3S_4 + 2S_3
= 4(S_4 + S_3 + S_2) + 3S_4 + 2S_3 = 7S_4 + 6S_3 + 4S_2.

We can now compute each of these terms. S_4 is the number of strings without 000. These are everything but:

0000, 0001, 1000.

So $|S_4| = 2^4 - 3 = 13$. Similarly, $|S_3| = 2^3 - 1 = 7$ and $|S_2| = 2^2 = 4$. So $|S_8| = (7)(13) + (6)(7) + (4)(4) = 149.$

So the answer is $256 - 149 = -107$.

(b) (3 points) How many strings contain three 0's?

$$
\binom{8}{3} + \binom{8}{4} + \binom{8}{5} + \binom{8}{6} + \binom{8}{7} + \binom{8}{8}
$$

(c) (4 points) How many string contain more 0's than 1's?

$$
\binom{8}{5} + \binom{8}{6} + \binom{8}{7} + \binom{8}{8}
$$

Page 4

- 8. Let $S \subset \mathbb{N}$ be a set. An element $l \in S$ is called the *least element* in S if for all $s \in S, l \leq s$. Let also $A_k = \{n \in \mathbb{N} : n \leq k\}.$
	- (a) (5 points) Prove by induction that A_k either contains l (the least element of S) or $A_k \cap S = \emptyset$.

For $k = 1$: $A_1 = \{1\}$. If $1 \in S$, then it is the least element since 1 is the least element in N. If $1 \notin S$, then $A_1 \cap S = \emptyset$. k implies $k + 1$: By the induction hypothesis either $A_k \cap S = \emptyset$ or $l \in A_k$. If $l \in A_k$, then $l \in A_{k+1}$. If $A_k \cap S = \emptyset$ and $A_{k+1} \cap S \neq \emptyset$, then $k+1 \in S$. Suppose there is an $s \in S$ so that $s < k + 1$. Then $s \in A_k$ and this would contradict our assumption. So $k + 1 = l$ and $l \in A_{k+1}$. Otherwise $A_{k+1} \cap S = \emptyset$.

(b) (5 points) Show that if S is nonempty, then S has a least element (hint: use (a)).

Since S is nonempty there exists an element $k \in S$ and so $k \in A_k$. Therefore $S \cap A_k \neq \emptyset$. By (a), $l \in A_k$ and thus S has a least element.