MIDTERM 2 (MATH 61, SPRING 2015)

Your Name:	Affred Lucero		
UCLA id:	604251044		
Math 61 Section:			
Date:	05/20115		

The rules:

You MUST simplify completely and BOX all answers with an INK PEN. You are allowed to use only this paper and pen/pencil. No calculators. No books, no notebooks, no web access. You MUST write your name and UCLA id. Except for the last problem, you MUST write out your logical reasoning and/or proof in full. You have exactly 50 minutes.

Warning: those caught writing after time get automatic 10% score deduction.

Points:	4 4
1 0	U
2 8	
3 13	
4 8	
5 / 76	
Total: 65	(out of 100)

Problem 1. (20 points)

Compute the number of (shortest) grid walks from (0,0) to (9,9) which:

- a) do not go through any of the other diagonal points (1,1), (2,2), ..., (8,8)
- b) stay on or above y = x 1 diagonal
- c) stay on or above y = x diagonal AND do not go through (6,6)
- d) stay on or above y = x diagonal AND on or below y = x + 1 diagonal.

Problem 2. (20 points)

Compute the number of subgraphs of G isomorphic to H, where

- a) $G = K_{7,9}, H = C_4$
- b) $G = K_{7,9}, H = P_4$
- c) $G = C_9$, $H = P_4$
- d) $G = K_9$, $H = K_{2,3}$

Problem 3. (15 points)

Let $a_1 = 2$, $a_2 = 7$, $a_{n+1} = a_n + 2a_{n-1}$. Solve this LHRR and find a closed formula for a_n .

$$a_{n+1} = a_{n+1} + a_{n-1}$$

$$\lambda^{2} = \lambda + 2 \quad \Leftrightarrow \quad \lambda^{2} - \lambda - 2 = 0 \quad ; \quad (\lambda + 1)(\lambda - 2) = 0$$

$$\lambda_{1} = -\frac{1}{2}$$

$$a_{n} = \alpha (-1)^{n} + \beta (2)^{n}$$

$$a_{1} = 2 = \alpha (-1)^{2} + \beta (2)^{2} \Leftrightarrow \alpha + 4\beta = 2 \qquad \alpha + \frac{3}{4} + \frac{4\alpha}{11} + \frac{3}{11} = \frac{3}{11}$$

$$a_{2} - \lambda = \alpha (-1)^{3} + \beta (2)^{3} \Leftrightarrow \frac{1}{2} + \frac{1}{2} + \frac{3}{4} + \frac{1}{2} = \frac{3}{4} = \frac{$$

$$2-x(-1)^{2}+B(2)^{2} + 2-x+2B$$

$$2-x(-1)^{2}+B(2)^{2} + 2-x+4B$$

$$9-4B$$

$$P=3-x=1$$

$$\sqrt{-1}^{n}+\frac{3}{2}(2)^{n}$$

Problem 4. (15 points)

Decide whether the following pairs of graphs on 8 vertices are isomorphic or non-isomorphic. They are isomorphic and form bija a)b)

Important: In case of isomorphism, you must write a bijection in the figure above (in ink). No need for further arguments. In case non-isomorphism, you must say so and present an argument

why two graphs are not isomorphic.

8

G3 # 64 because the number of subgraphs of
G3 isomorphic to C3 # the number of subgraphs
of 64 isomorphic to C3', the vertices 4-8 incises
that up while 63 has from d-re

Problem 5. (30 points, 2 points each) TRUE or FALSE?

Circle correct answers with ink. No explanation is required or will be considered.

F (1) Isomorphic graphs have the same number of edges. F Isomorphic graphs have the same number of connected components. F Isomorphic graphs have the same number of 4-cycles. F (4) $F_n \leq C_n$ for all integer n. F \mathbf{T} Sequence (3,3,3,3,3) is a valid score of a simple graph. (\mathbf{F}) \mathbf{T} (6) Sequence (4, 4, 4, 4, 2) is a valid score of a simple graph. \mathbf{T} F (7) Sequence (4,4,4,2,2) is a valid score of a simple graph. T \mathbf{F} (8) Sequence (4, 4, 2, 2, 2) is a valid score of a simple graph. \mathbf{F} (9) Sequence (2, 2, 2, 0, 0) is a valid score of a simple graph. F (10) Graph C_8 is a subgraph of $K_{7,7}$. \mathbf{T} (11) Graph C_8 is a subgraph of $K_{9,3}$. T (12) Graph P_8 is a subgraph of $K_{9,3}$. \mathbf{T} (13) Graph K_4 is a subgraph of $K_{7,7}$. \mathbf{T} (14) Graph K_9 has 72 edges. \mathbf{T} (15) Catalan numbers modulo 2 are periodic with period 6. Zxn=Omod2