MIDTERM 1 (MATH 61, SPRING 2015)

Your Name:	ALFRED LUCERO
	604251044
UCLA id:	009 2311)99
Math 61 Section:	
Date:	April 30, 2015

The rules:

You MUST simplify completely and BOX all answers with an INK PEN. You are allowed to use only this paper and pen/pencil. No calculators. No books, no notebooks, no web access. You MUST write your name and UCLA id. Except for the last problem, you MUST write out your logical reasoning and/or proof in full. You have exactly 50 minutes.

Warning: those caught writing after time get automatic 10% score deduction.

Points:

1 | 8
2 | 16
4 | 12
5 | 22

Total: 66 (out of 100)

MIDTERM 1 (MATH 61, SPRING 2015)

Problem 1. (20 points)

Compute the number of permutations (x_1, x_2, \ldots, x_n) of $\{1, 2, \ldots, 9\}$ such that:

a) $x_1 = 2$,

b) $x_1 \cdot x_2 \cdot x_3 = 6$, = 1,2,3 avanged in any way = $\frac{1}{3}$, $\frac{1}{6}$

c) $x_1 = x_2 = x_3 \mod 7$,

d) $x_1 < x_2 < 5$.

h-Hordements

X1= X2 = X3 Mod7 =

103 humbers from same set are same mod?

$$x_{2}=3$$
, $2\cdot 7!$ = $[6\cdot 7!]$

Problem 2. (20 points)

Let $X = \mathbb{Z} = \{0, \pm 1, \pm 2, \ldots\}$ be the set of all integers. For each of these relations R, decide whether they are reflexive, symmetric or transitive (or neither).

- a) xRy if and only if |x| = |y|.
- b) xRy if and only if $x + 2y = 0 \mod 3$.
- c) xRy if and only if $x^2 + 2y^2 = 0 \mod 3$.
- d) xRy if and only if $x^3 + 122y^3 = 0 \mod 3$.

MIDTERM 1 (MATH 61, SPRING 2015)

Problem 3. (15 points)

Let $A=(0,0),\ B=(10,10).$ Find the number of (shortest) grid walks γ from A to B, such that:

- a) γ never visits points (0, 10), (10, 1), (5, 5).
- b) γ visits all points $(1,1), (2,2), (3,3), \ldots, (9,9)$.
- c) γ visits points (5,0) and (5,10), but not (5,5).

a) (0,10), (10,1), (5,5)

total possible - Invovan each point

b) Visits all paints (1,1), (2,7, (3,3), - (9,9) = all total possible ways

21 2 10 12 12 12 10 mes = 210

c) (5,0) and (5,10), but not (5,5) = (5,0) = (

Problem 4. (15 points)

Recall the Fibonacci sequence: $F_1 = 1$, $F_2 = 1$, $F_3 = 2$, $F_4 = 3$, $F_5 = 5$, $F_6 = 8$, etc.

Prove that $F_n \leq 2^{n-1}$.

Proof: (by Induction)

Base case: (h=1) $F_2 \stackrel{!}{=} 2^{2n} \stackrel{!}{=} 2^0 \stackrel{!}{=} 1$ $F_1 \stackrel{!}{=} 2^{n-1} \stackrel{!}{=} 1 \stackrel{!}{=} 2^n \stackrel{!}{=} 2^n \stackrel{!}{=} 1 \stackrel{!}{=} 2^n \stackrel{!}{=} 2^$

(12)

(30 points, 2 points each) TRUE or FALSE?

Circle correct answers with ink. No explanation is required or will be considered.

F The number of functions from $\{A, B, C, D\}$ to $\{1, 2, 3\}$ is equal to 4^3 .

The sequence 10, 21, 32, 43, ... is increasing. Mulasmy and non-decologing T \mathbf{F}

There are 20 anagrams of the words AAAACCC which in with A than with C.

(5) There are more an agrams of the words AAAACCC which \mathbf{T} \mathbf{F} begin with A than with C.

There are infinitely many Fibonacci numbers $= 1 \mod 3$.

There are infinitely many binomial coefficients $\binom{n}{k} = 1 \mod 17$.

(8) Each of the 14 students wrote on a paper 10 distinct numbers, from the set $\{1, 2, \dots, 100\}$. Then there are two students who have at least 2 numbers in common on their lists.

(9) The probability that a random 10-subset of $\{1, 2, \dots, 19\}$ contains 10 is equal to 1/2. \mathbf{T}

 \mathbf{T} (10) For every two subsets $A, B \subset U$, we must have $|A \setminus B| = |B \setminus A|$. \mathbf{F}

(11) For every two subsets $A, B \subset U$, we must have $|A \cup B| \ge |\overline{B}|$ \mathbf{T} F

(12) Every surjection that is also a bijection must be also an injection.

(13) Every surjection that is also an injection must be also a bijection.

(14) Let \mathcal{A} be the set of 3-subsets of $[9] = \{1, 2, ..., 9\}$. Similarly, let \mathcal{B} be the set of 6-subsets of [9]. Consider a map $f: A \to [9] \setminus A$. Then fis a bijection from A to B.

(15) The pigeon hole principle was proved in class by induction.