UCLA ID: Your Name:

SECTION: Cross one box below

Day \ T.A.	John	Zach	Sam
Tuesday	1A	1C	1E
Thursday	1B	1D	1F

Problem 1. Circle the option that applies. The number of 3-permutations of $\{1, 2, 3, 4, 5\}$ (i.e. injections from $X = \{1, 2, 3\}$ to $Y = \{1, 2, 3, 4, 5\}$) is

- (a) 15,
- (b) 3!,

$$(6)$$
 30, $60 = 5^{-} \cdot 4 \cdot 3$

- (d) 10,
- (e) 5!.

Problem 2. Circle the option that applies. The number of 3-combinations of $\{1, 2, 3, 4, 5\}$ is

- (a) 15,
- (b) 3!,
- (c) 30,
- (d) 10,
 - (e) 5!.

Problem 3. Circle the option that applies How many nonnegative integer solutions are there to $x_1 + x_2 + x_3 + x_4 = 6$? $\begin{pmatrix} 6+4-1 \\ 4-1 \end{pmatrix} = \begin{pmatrix} 9 \\ 3 \end{pmatrix}$

- (a) $\binom{6}{4}$,
- (b) $\binom{9}{3}$,
- (c) $\binom{10}{4}$,
- (d) $\binom{10}{3}$,
- (e) $\binom{9}{4}$.

Problem 4. Below are parts of the ninth and tenth row of Pascal's triangle: $\binom{9}{0}, \ldots, \binom{9}{9}$ and $\binom{10}{0}, \dots, \binom{10}{10}$. Fill in the missing entries.