Your Name: UCLA ID:

SECTION: Cross one box below

Day \ T.A.	John	Zach	Sam
Tuesday	1A	1C	1E
Thursday	1B	1D	1F

Problem 1. Circle the correct answer. If a sequence s_n is defined by $s_n = 6 \cdot 3^n + 18 \cdot 2^n$ for $n \ge 1$ then s_{n-1} has the following formula:

- (a) $2 \cdot 3^n + 9 \cdot 2^n$,
 - (b) $18 \cdot 3^n + 36 \cdot 2^n$,
 - (c) $3^n + 9 \cdot 2^n$,
 - (d) $3^n + 6 \cdot 2^n$,
 - (e) $2 \cdot 3^n + 6 \cdot 2^{n-1}$.

Problem 2. Circle ALL the correct answers. Given sets A, B, C, the set $A \cap \overline{B \cap C}$ also equals

- $(a) \overline{\overline{A} \cup B} \cup (A \cap \overline{C})$
- $(b) (A \cap \overline{B}) \cup (A \cap \overline{C})$
- $\overline{\overline{A} \cup (B \cap C)}$
- (d) $(A \cap \overline{B}) \cap (A \cap \overline{C})$
- (e) $(A \cap \overline{B}) \cup \overline{\overline{A} \cup C}$

 $A \wedge (B \wedge C) = A \wedge (\overline{B} \cup \overline{C})$ $= (A \wedge \overline{B}) \cup (A \wedge \overline{C})$ $= (\overline{A} \cup B) \cup (\overline{A} \cup C)$ $= (A \wedge \overline{B}) \cup (\overline{A} \cup C)$

Problem 3. Given functions $f: Y \to Z$ and $g: X \to Y$ below, draw the function $f \circ g$ (i.e. $f \circ g(a) = f(g(a))$) with domain X and range X.

