A ## Math 61 Midterm 2 November 20, 2015 50 minutes | Your Name: | Michael Wang | | |------------|--------------|--| | and the | | | | UCLA ID: | | | SECTION: Cross one box below Tuesday | | $\text{Day } \setminus \text{T.A.}$ | John | Zach | Sam | |---|-------------------------------------|------|------|-----| | 7 | Tuesday | 1A | 1C | 1E | | | Thursday | 1B | (FP) | 1F | | | | | | | Rules: You MUST simplify completely and BOX all answers with an INK PEN. You are allowed to use only this paper and pen/pencil. A one-sided hand-written formula sheet is allowed. No calculators, no books, no notebooks, no web access. You MUST write your name and UCLA id. Except for the last problem, you MUST write out your logical reasoning and/or proof in full. You have exactly 50 minutes. Warning: At 1:50pm your out of time, those caught writing after time get automatic 10% score deduction. | Problem | Value | Score | |-----------|-------|-------| | Problem 1 | 12 | 12 | | Problem 2 | 8 | 8 | | Problem 3 | 8 | 8 | | Problem 4 | 10 | 10 | | Problem 5 | 12 | 16 | | Total | 50 | 48 | **Problem 1.** How many grid paths are there from (0,0) to (10,10) that - (a) Stay on or above the diagonal y = x and go through (1, 9). - (b) Go through (6,6) and from that point on stay on or above the diagonal, y = x. - (c) Only touch the diagonal y = x at (0,0) and (10,10). - (d) Stay on or above the diagonal y = x 1. Note: If needed you can use the formula for Catalan numbers $C_n = \frac{1}{n+1} \binom{2n}{n}$ or write your answers in terms of C_n . a) (6/0) \$ (1/7) = 9 (1/9) \$ (10/10) \$ 1 b) 0 10 (6,6) = (17) (6,6) + (10,10) = (4 mot pa on, the Car, the right me x2 d) . Oxland y=x-1 + (0,-1), +hm i) (11 Corce must go y frot, last more is to the right) ## Problem 2. (a) Find a recurrence and initial conditions for a_n for $n \geq 0$ with solution $$a_n = \frac{1}{2}(1+\sqrt{2})^n + \frac{1}{2}(1-\sqrt{2})^n,$$ (b) Show that $\frac{1}{2}(1+\sqrt{2})^n + \frac{1}{2}(1-\sqrt{2})^n$ is an integer for all $n \ge 0$. The only term in the expansion that are not integer are when kins odd, when he is odd, the term in B To regarding lecarde (-1)=-1 when he is regarding. Thui, the non-integer term cancel out, leastly 2.((1)1-4(1)1-2)2+1-). Thui, Ser ((1)1-4(1)1-2(12)2+1...)) is just a sum of integers, making the result an integer. **Problem 3.** In a planar graph G all vertices have degree 5 and all faces have degree 3 (i.e. faces are triangles). - (a) Relate the number of vertices |V| with the number of edges |E| of G. - (b) Relate the number of faces f of a planar embedding of G with the number of edges |E| of G. - (c) Use Euler's formula to find the number of vertices |V| = (2), edges |E| = (3) and faces $f = \underline{\hspace{1cm}} \circ G$. You must show your work. b) Each Date to for f = 20 (see **Problem 4.** Decide whether the following pairs of graphs are isomorphic or non-isomorphic. Note: In case of isomorphism you must write a bijection in the figure above right (using ink). No need of further argument. In case of non-isomorphism you must say so and present an argument why the two graphs are not isomorphic. Problem 5. True or False Circle the answers only with ink, next to the questions. No reasoning/calculations will be taken into account. T) or F. (1) If a person is paid at the start of every two weeks then there is a month of the year with three payments. **T.** or **F.** (2) $F_n \leq \binom{n+2}{2}$ for all integers $n \geq 1$. T. or \bigcirc (3) The hypercube H_n for all $n \geq 2$ has a closed Eulerian tour. (i) or F. (4) The hypercube H_n for all $n \geq 2$ has a Hamiltonian cycle. or F. (5) A graph isomorphic to a bipartite graph is also bipartite. T. or $\widehat{\mathbf{F}}$. (6) Graph K_4 is a subgraph of the 4-cube H_4 . T. or (F) (7) Dijkstra's algorithm finds the weight of the shortest Hamiltonian cycle with vertices a and z of a graph. T) or F. (8) If A is the adjacency matrix of a graph with n vertices then $A_{1,1}^2 + A_{2,2}^2 + \cdots + A_{n,n}^2$ is always even. Tor F. (9) (2,2,2,2,4,4) is a valid degree sequence for a simple graph. T. or F. (10) (3,3,3,3) is a valid degree sequence for a simple graph. T. or F. (11) All simple graphs with degree sequence (3,3,3,3,3,3) are non planar. $\widehat{\mathbf{T}}$. $\widehat{\mathbf{F}}$. (12) All simple graphs with degree sequence (4,4,4,4,4) are non planar.