Math 61 Midterm 1 OCT 21 2015

50 minutes

Your Name: Konral Niemicc

UCLA ID: 8044239 78

SECTION: Cross one box below

	Day \ T.A.	John	Zach	Sam
-	Tuesday	1A	(1C)	1E
	Thursday	1B	1D	1F

Rules: You MUST simplify completely and BOX all answers with an INK PEN. You are allowed to use only this paper and pen/pencil. A one-sided hand-written formula sheet is allowed. No calculators, no books, no notebooks, no web access. You MUST write your name and UCLA id. Except for the last problem, you MUST write out your logical reasoning and/or proof in full. You have exactly 50 minutes.

Warning: At 1:50pm your OUTATIME, those caught writing after time get automatic 10% score deduction.

Problem	Value	Score
Problem 1	8	8
Problem 2	10	3.
Problem 3	10	6
Problem 4	12	1(
Problem 5	10	7
Total	50	35

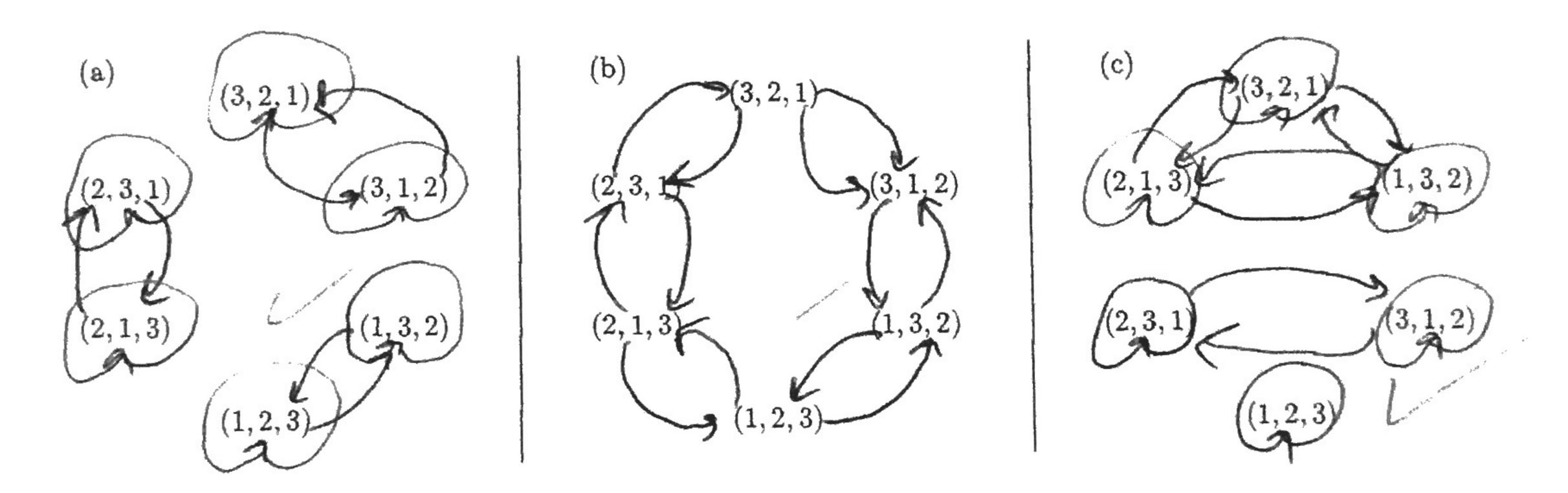
buse case:
$$N = 1$$
 (0)-1) $J^{3} + \lambda = \lambda$
Given N , Shownt1

$$F(n)+q_{n+1}=(n-1)_{n} a^{n+1} + a + (n+1) a^{n+1} = a^{n+1}(nA+nA) + a$$

$$= 2i a^{n+1} \cdot n + d = n a^{n+2} + d = F(n+1)$$
By induction,

(b) Show by induction that
$$e^n \ge n+1$$
 for integers $n \ge 1$ $(e=2.71...)$.

(b) Show by induction that
$$e^n \ge n+1$$
 for integers $n \ge 1$ ($e = 2.71...$).


Buse cuse: $n = 1$ $e^n \ge 2$ V

Inductive step: Given n , show $n+1$

(6, 6)Problem 2. Find the number of grid paths from (0,0) to (6,6) that (a) go through (2, 2), (b) go through (4, 4), (c) go through (2,2) or (4,4),
(d) do not go through (2,2) and (4,4). You can write your answers in terms of binomials. (0, 0)

Problem 4. Let $X = \{(1,2,3), (2,1,3), (1,3,2), (2,3,1), (3,1,2), (3,2,1)\}$ be the set of permutations of size 3. For each of these relations R on X, draw its digraph and decide whether each is reflexive, symmetric or transitive (or neither).

- (a) $(a_1, a_2, a_3)R(b_1, b_2, b_3)$ if and only if $a_1 = b_1$.
- (b) pRq if and only if q can be obtained from p by swapping two adjacent elements. e.g. (1,2,3)R(2,1,3).
- (c) The relation induced from the partition $X_1 = \{(1,2,3)\}, X_2 = \{(2,1,3), (3,2,1), (1,3,2)\}, X_3 = \{(2,3,1), (3,1,2)\}$ of X.

- a) reflexive, symmetric, and transitive. Equivalence relation
- b) reflexive, symmetric, but not transitive
- c) tellexive, symmetric, and transitive Equivalence relation

AU(BNT) (AMB) SU(AMT)

Problem 5. True or False Circle the answers only with ink, next to the questions. No reasoning/calculations will be taken into account.

(a) The sequence $a_n = n! - 2^n$ is decreasing.	T. or E
(b) The sequence $1/\binom{2}{2}$, $1/\binom{3}{2}$, $1/\binom{4}{2}$, is nonincreasing.	T. of F.
(c) Given sets $A, B, C \subset U$ the set $A \cup \overline{B \cup C}$ equals the set $(A \cap \overline{B}) \cup (A \cap \overline{C})$.	T. of F.
(d) The name EMMETT has more than 88 rearrangements of its letters.	K of F.
(e) A prime number p divides all the binomial numbers $\binom{p}{1}, \binom{p}{2}, \ldots, \binom{p}{p-1}$.	T. or F.
(f) There are more injections than surjections from $\{A, B, C, D\}$ to $\{1, 2, 3, 4\}$.	T. ox F.
(g) There are more subsets of $\{1, 2,, 11\}$ of odd size than even size.	T.)or F.
(h) There are the same nonnegative integer solutions to $x_1 + x_2 + x_3 = 4$ as positive ingeter to $y_1 + y_2 + y_3 = 7$. (i) The coefficient of x^2y^2 in $(x + y + 1)^6$ is $\binom{3}{4}$.	
(i) The coefficient of x^2y^2 in $(x+y+1)^6$ is $\binom{6}{4}$?	T. or(F.)
(j) There are more symmetric relations than antisymmetric relations on n elements. 11 11 11 (11) (11) (6) (6) (6) (7) $\frac{6}{2}$ $\frac{1}{2}$ 1	T. or F.) 6.543
12 134567 ((a) 410! God 47 47 2121 ((a) 410! 212! 212! a! a!a! a!a! a!a! a!a!	1 25.8
on a_{n+1} a	(3) 7 4! 2:2!
n! ? (n+1)] - 2" (P-A!r!, Siv	1170
(n+1) n n 5.4.3.2	
$-n\cdot n!?-a^n$ $O? n(nan)!-a^n$ $Q_n \leq q_n+1$	