Math 61
Midterm 2
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There are 5 questions. Write clearly, show all of your work, and justify all of your answers. No calculators

are allowed.
;‘

(O
L\
15

37

Total (; 5

= Qo DN —




1%

(a) (5 pts) Show that C(i,k) =
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(b) (5 pts) Show that
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(a) (5 pts) Find the general solution for the recurrence a, = —4an—1 — 4an—2.

. ?!El! 3
= (2 = p=-2
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) '}IJ‘ Aoln - a,= ¢ (-2? + Czn(-lvn

(b) (5 pts) Find the solution to the recurrence a, = —4a,—1 —4a,—» for n > 2 with initial conditions

ap =3 and a; =0.
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3. (a) (10 pts) Suppose G = (V,E) is a simple graph with n vertices. Prove that if deg(v) > 251 for
every vertex v € V, then G is connected.
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(b) (5 pts) Suppose G = (V, E) is a simple graph with n vertices where n > 1. Prove that there must
be two different vertices of G that have the same degree.
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4. (a) (5 pt

isomorphic.

G,= (V\,E\, and G, = (v

State the definition of when two simple graphs G; = (V1,E;) and G2 = (Va, E2) are

2,B2) o Awomorphic 4 T x bi;}‘ulwm f:Vv,>vV, <t.
| Yuvev, () ek, 4 G, F) ¢ E, ]

(b) (5 pts) Are the following two graphs isomorphic? If so, give an isomorphism using the table below.

If not, explain why.
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(c) (5 pts) Are the following two graphs isomorphic? If so, give an isomorphism using the table below.

If not, explain why.
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5. (20 pts) Circle whether the following are True or False. You do not need to justify these answers.
7 /@ There is a simple graph with 6 vertices whose vertices have degree 0, 1, 2, 3, 4, and 4.

\/@ F: The graph K3 3 has exactly 322% = 144 simple cycles.

n
>< /@ 4" = Z 2"C(n, 1) for every integer n > 0.
50 =0 P
n — n
“rIE0)

\/ T @The general solution for the recurrence a, = 6an—1 + 9an—x +2" is an, = b13™ + b22" where by, bo

are constants. 2

0=N-6A-T = (A-3)°
Y (@ F: If P(n,k) is the number of partitions of {1,...,n} into k¥ many pieces, then for n,k > 1,

k
P(n,k)=>_C(n,i)P(n—ik—1).
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\/{/ﬂ/ F: If G is a graph with n vertices, then any path of length n in G must include some vertex at least
it twice.
\/T @ Suppose A is the adjacency matrix of a graph G with n vertices. If G is connected, then every
entry of the matrix A™ is nonzero.

\/ @ F: Suppose G is a graph with weight function w, fix a vertex a, and for every vertex v in G, let L(v)
be the length of the shortest path from a to V. If we use Dijkstra’s algorithm to find L(v), then
before algorithm returns L(v), the algorithm first correctly finds L(u) for every vertex u such that
L(u) < L(v).

\< T X F:) There are (n — 1)! different isomorphisms from K, to K.
j nl

\/@/ F: If G is a simple graph that has an Euler cycle, and G’ is a subgraph obtained from G by removing

only a single edge and removing no vertices, then G’ cannot have an Euler cycle.




