Math 61
Midterm 1
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There are 5 questions. Write clearly, show all of your work, and justify all of your answers. No calculators
are allowed.
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1. (15 pts) l g '

(a) (5 pts) Write the definition of what it means for a relation R on a set X to be an equivalence
relation.
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(b) (6 pts) Let E be the relation on the set of all positive real numbers R* where z E y if z/y = 2"

for some integer n € {...,—2,-1,0,1,2,...}. For example, (2/3) E (8/3), since %% =&=24,

Show that E is an equivalence relation.

20

. X
Jojleyive %u ¥ x €RY, = | =2° (e, rn:(.\\‘ = xEx.

AH,“U?"E&;{,;: qu V‘XV\‘JQR*\ XE\/%%:zﬂ; (\GZL %Emez)m:'fh

Y
S.{.'; T \/EX

Iranditiye * Yed Yy z€ R

=g PEZ, p=n+m s

E b soflovive, dypmmebue, ond Aronade = E ju om efféuta(f,nw, Julddion.

(c) (4 pts) What is the equivalence class of 1 with respect to the relation E?
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2. (15 pts)
Prove the following by induction for every n > 1. For all finite sets X and Y with |X| = [Y|=n, if f

is a function from X to Y that is one-to-one, then f is onto.

(a) (3 pts) State and prove the base case.
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(b) (9 pts) Prove the inductive step.
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(c) (3 pts) Either prove the following or give a counterexample: For every set X, if f is a one-to-one
function from X to X, then f is onto.
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3. (10 pts) In the following problem, for full credit, state any counting rules or principles
that you use. You do not need to simplify your answers (for example, they may contain
factorials). However, your final answer may not include the functions P(n,r) or C(n,7).
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(a) (5pts) How many solutions are there to z; +z2 + ...+ 9 = 20, where z1,Z2, ..., Zg are integers
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(b) (5 pts) How many solutions are there to zy + 2 +...+z9 = 20, where 71,2, ..., Zg are integers
greater than or equal to 0, and least one of the va.rlables z1,...,Tg is equal to 0 or exactly one of
/\ the variables z1,...,zq is equaj\to‘l?
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(15 pts) Consider a standard deck of 52 playing cards, where each card is one of four different suits
$,Q, &, & and one of 13 different ranks: 4, 2, 3, 4,5, 6, 7, 8, 9, 10, J, @, K, and all combinations of
suits and ranks are possible.

A hand means 5 different cards where order does not matter.

For full credit, state any counting rules or principles that you use. You do not need to
simplify your answers (for example, they may contain factorials). However, your final
answer may not include the functions P(n,r) or C(n,r).

(a) (5 pts) How many hands contain only cards whose rank is J or @ or K?
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(b) (5 pts) How many hands are “three of a kind” (contain three cards of one rank, and the remaining
cards have two other ranks)?
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(c) (5 pts) How many hands are “two pair” (contain two cards of the same rank, two cards of another
rank, and one card of a third rank)?
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5. (20 pts) Circle whether the following are True or False. You do not need to justify these answers.

@/ F: If A and B are finite sets and |AU B| = |B|, then A C B.
@/ F: If X is a finite set with |X| = k, then there are k" many strings over X of length n.
CTJ)/ F: If f is a bijection from X to Y, then f~! is a bijection from Y to X.

T /( ) There are S"+—m)— ways to divide n many identical balls into m many distinct boxes.
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T j F: Consider the set S of strings of length 10 containing exactly four a’s, three b’s, and three c’s.
There are more strings in S ending with a than there are strings in S ending with b._
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T / @ Suppose f is a function from X to Y. Then f is one-to-one if for every = € X there is a unique
y €Y so that f(z) =

‘ ’f\/ F: Suppose R is a relation on a set X and R is transitive and symmetric. Then for all z,y € X, if
et (z,y) € R, then (z,z) € R.

@/@ The relation {(1,2), (3,1),(2,3), (1,1),(2,2), (3,3)} on the set {1,2,3} is transitive.
IR2 and 2R3 but t X3,

T /\@‘j The number of onto functions from {1, 2, 3,4,5} to {1,2} is equal to W23
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)/ F: If n > 3, then there are (n — 1)!/2 ways to seat n different people around a circular table where
two seatings are considered identical if each person has the same (unordered) set of two neighbors.




