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Math 61 : Discrete Structures
Final Exam
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You have 180 minutes.

No books, notes or calculators are allowed.
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1. (2 points each) True/False: Circle the right answers. You do NOT need to justify
your answers.

There exists a function from the empty set ∅ to the set {1}. T

There exists a function from the set {1} to the empty set ∅. F

Any surjective function f : {1, 2, . . . , 100} → {1, 2, . . . , 100} is bijective. T

We want to select a team of 7 (unordered) players out of 60 people.
This can be done in exactly 60!

53!
ways. F

When we expand the expression (x− y + z)10, the coefficient of x2y4z4 is 10!
2!4!4!

. T

Let G be the graph with one vertex and no edges. Then G is bipartite. T

There exists a graph with 9 vertices, all of degree 3. F

The Selection Sort algorithm sorts n objects in time Θ(n lgn). F

lg(2n + 3n) = Θ(n). T

lg(2n + (n!)2) = Θ(n lgn). T



2. (5 points each) Write down the answer to each question. You do NOT need to justify

your answers.

The number of functions f : {1, . . . , 10} → {1, . . . , 15} that are NOT injective is:

1510 −
15!

5!

Determine the number of relations on the set {1, 2, . . . , n} that are either symmetric, or
reflexive, or both:

2n
2
−n + 2n(n+1)/2 − 2n(n−1)/2

In how many ways can we distribute 100 identical cookies to 10 people, such that the kth
person gets at least k cookies, for all k? (In other words, person 1 gets at least one cookie,
person 2 gets at least two cookies, ... , person 10 gets at least ten cookies.)

10∑

k=1

ak = 100 with bk = ak − k ≥ 0

means
10∑

k=1

bk = 100− (1 + 2 + · · ·+ 10) = 100− (10 · 11)/2 = 100− 55 = 45

so the number is
C(10 + 45− 1, 10− 1) = C(54, 9)



Calculate the sum:

C(51, 0) + C(51, 1) + C(51, 2) + · · ·+ C(51, 24) + C(51, 25).

We know that C(51, k) = C(51, 51− k). Therefore,

C(51, 0)+· · ·+C(51, 25) = C(51, 26)+· · ·+C(51, 51) =
1

2
(C(51, 0)+· · ·+C(51, 51)) =

1

2
251 = 250.

The trees

(with the roots drawn as the bigger dots) are:

(A) isomorphic as both free trees and rooted trees;

(B) isomorphic as free trees, but not as rooted trees;

(C) isomorphic as rooted trees, but not as free trees;

(D) not isomorphic as free trees, and not isomorphic as rooted trees.



3. (10 points) Let X ⊂ {1, 2, . . . , 100} be a subset consisting of 57 numbers. Show that
we can find a ∈ X such that a + 13 ∈ X . Fully justify your answer.

Consider the elements of X and X ′ = {a + 13 | a ∈ X}. Together they are 57 · 2 = 114
elements from 1 to 113. By the pigeonhole principle, two are equal.



4. A simple, connected, planar graph G has each vertex of degree 4.

(a) (6 points) Show that G has at least 8 faces (including the outer face). Fully justify

your answer.

The sum of the degrees is 4v = 2e, so e = 2v. Euler’s formula gives v − e + f = 2, so
v − 2v + f = 2, and hence v = f − 2 and e = 2(f − 2). Since each face has at least 3 edges,
we have 3f ≤ 2e = 4(f − 2), which implies f ≥ 8.

(b) (4 points) Give an example of such a graph G, with each vertex of degree 4 and exactly
8 faces.

Note that in order to have equality in the argument above, each face must have exactly
3 edges. Also, there must be 12 edges and 6 vertices. Here’s an example:



5. (5 points each) Determine if the following graphs are planar. If the graph is planar,

redraw it so that the edges do not cross. If the graph is not planar, explain why.

(a)

a

b

c

de

This is planar, it can be redrawn as:

a

bc

d

e



(b)

e

a

b c

d

f

g

This is not planar, as it contains a graph homeomorphic to K3,3, with the bipartition
being a, c, e versus b, d, f :

e

a

b c

d

f

g



6. Consider the graph from the previous problem, with the order of the vertices being
abcdefg.

e

a

b c

d

f

g

(a) (5 points) Find a spanning tree using the breadth-first algorithm. Show the interme-
diate steps in finding the tree, by writing down the edge added at each step.

We start at a, then add the following edges in order:

(a, b), (a, c), (a, e), (a, f), (a, g), (c, d)

with the result being the spanning tree

e

a

b c

d

f

g



(b) (5 points) Find a spanning tree using the depth-first algorithm. Show the intermediate
steps in finding the tree, by writing down the edge added at each step.

e

a

b c

d

f

g

We start at a, then add the following edges in order:

(a, b), (b, c), (c, d), (d, e), (e, f), (d, g)

with the result being the spanning tree

e

a

b c

d

f

g



(c) (5 points) We put weights on the edges of the graph as follows:

e

b c

d

f

g

5

43

9 7

7

a

5

2

5
8 6

2

Find a minimal spanning tree using Prim’s algorithm. Show the intermediate steps by
writing down the edge added at each step.

We start at a, then add the following edges in order:

(a, f), (a, g), (g, d), (d, e), (a, c), (c, b)

with the result being the spanning tree in boldface:

e

a

b c

d

f

g

5

6

2

43

9

5

2

8

7

5

7



7. We define a ternary tree to be a rooted tree with the following properties:

• Each vertex has at most three children;

• Each child of a vertex is labeled by L (left), M (middle) or R (right), and no two
children of the same vertex have the same label.

An example is shown below:

L

L

RL

R

R

R

L M

M

M

M

L

We define an isomorphism of ternary trees to be a bijection between their sets of vertices
with the following properties:

• It preserves the adjacency relation;

• It takes the root to the root;

• It preserves the labels: it takes L children to L children, M children to M children,
and R children to R children.

For example, these are all nonisomorphic ternary trees with 2 vertices:

RL M

(Continued on next page)



(a) (3 points) Draw all nonisomorphic ternary trees with 3 vertices.

R

M

L

L

M

M

M R

M

L

R

ML L R M R

R

M

R

L

R

L

L



(b) (3 points) Let an be the number of nonisomorphic ternary trees with n vertices. Find
a recurrence relation for an.

A ternary graph with n vertices is composed of its root and three subtrees coming from
the root: left, middle, and right. If i, j, k denote the number of vertices in the left, middle,
and right subtrees, respectively, then i+ j+k = n−1. Each subtree is a ternary graph itself.
Therefore,

an =
∑

i+j+k=n−1

aiajak.



(c) (4 points) Let h be the height of a ternary tree with n vertices. Show that:

h ≥ ⌈log3(2n + 1)⌉ − 1.

At level 0 we have at most 1 vertex, at level 1 at most 3 vertices, at level 2 at most 32

vertices, . . . , at level h at most 3h vertices. Thus, the total number of vertices n is at most

1 + 3 + 33 + · · ·+ 3h =
3h+1 − 1

3− 1
.

The inequality

n ≤ (3h+1 − 1)/2

can be rewritten as

log3(2n+ 1) ≤ h + 1

or

h ≥ log3(2n + 1)− 1.

Since h is an integer, we can use the ceiling of log3(2n+ 1).



Do not write on this page.

1 out of 20 points

2 out of 25 points

3 out of 10 points

4 out of 10 points

5 out of 10 points

6 out of 15 points

7 out of 10 points

Total out of 100 points


