Name (Print):	
Name (Sign):	
Discussion Section:	
	Name (Sign):

This exam contains 6 pages (including this cover page) and 5 problems. Check to see if any pages are missing.

You may *not* use books, notes, or any calculator on this exam.

Unless otherwise stated in the problem, you may leave all answers in terms of $\binom{n}{k}$, P(n,k), k!, or any sum, difference, product, or quotient of such symbols.

Partial credit will only be awarded to answers for which an explanation and/or work is shown.

Please attempt to organize your work in a reasonably neat and coherent way, in the space provided. If you need more space, use the back of the pages; clearly indicate when you have done this.

Problem	Points	Score
1	24	
2	16	
3	22	
4	18	
5	20	
Total:	100	

- 1. (24 points) There are 999,999 natural numbers less than one million. We write any of them as a six digit number, including leading zeros. (For example, 001124 is how we write the number 1124).
 - (a) How many of these numbers have all different digits?

Answer: $10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5$

(b) How many of these numbers have exactly four distinct digits? (For example, 922433 is valid, but 922435 is not valid and 922444 is not valid).

Answer:
$$C(10,4)\left(C(4,1)\frac{6!}{3!}+C(4,2)\frac{6!}{2!2!}\right)$$

(c) How many of these numbers have digits that sum to 18?

Answer: C(23,5) - 6C(13,5)

2. (16 points) Solve the recurrence relation $A_n = 3A_{n-1} + 4A_{n-2}$, where $A_0 = 3$, $A_1 = 7$.

Answer: Different versions had different initial conditions. For all versions, general form is

 $A_n = b4^n + d(-1)^n.$

For these initial conditions, we have $A_n = 2(4^n) + (-1)^n$.

3. (22 points) Recall that a k-cycle is a cycle that includes k edges. In this problem, you will prove Ramsey's theorem, which states that if $n \ge 6$ and we color each edge of K_n either blue or red, then there must exist either a set of three blue edges that form a 3-cycle, or a set of three red edges that form a 3-cycle.

To this end, let $n \ge 6$ be arbitrary, and suppose every edge in K_n is colored either blue or red. Let v_1 be a vertex in K_n .

(a) Prove that at least three of the edges incident to v_1 are the same color.

Answer: In K_n , every vertex has degree n-1. Thus, since $n \ge 6$, there are at least 5 edges incident to v_1 . To color the edges, we map each edge to either red or blue. Then by the 3rd form of Pigeonhole Principle, there are at least $\lceil \frac{n-1}{2} \rceil \ge \lceil \frac{5}{2} \rceil = 3$ edges incident to v_1 of the same color.

(b) In the previous part, you proved that at least three of the edges incident to v₁ are the same color. Without loss of generality, you may assume that color is blue. Suppose that {v₁, v₂}, {v₁, v₃}, and {v₁, v₄} are blue edges. Prove that between these four vertices, there must exist either a blue 3-cycle or a red 3-cycle.

Answer: Consider the edges $\{v_2, v_3\}$, $\{v_3, v_4\}$, and $\{v_2, v_4\}$. If any of these three edges is blue, that edge will form a blue 3-cycle with v_1 . The only other case is if all three of these edges are red, in which case these three edges will form a red 3-cycle.

4. (18 points) Prove the combinatorial identity

$$\sum_{i=0}^{k} C(m+k-i-1,k-i) \cdot C(n+i-1,i) = C(m+n+k-1,k)$$

using a combinatorial argument. No more than half credit will be awarded to an algebraic proof. (Hint: Use Pirates and Gold.)

Answer: Suppose m distinct blue pirates and n distinct green pirates come upon a treasure of k identical pieces of gold. We want to count the number of ways that the gold can be distributed among the pirates. We count this number in two ways.

RHS: We consider all m + n pirates together, and count the number of ways to distribute k identical objects to m + n distinct objects. This number is C(m + n + k - 1, k).

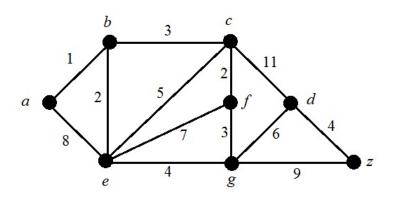
LHS: We partition the set of outcomes according to how much of the gold goes to the green pirates. For any integer i such that $0 \le i \le k$, the green pirates could get i pieces of the gold, in which case the blue pirates would get the remaining k-i pieces of the gold. If the green pirates get i pieces of the gold, then we count the number of ways to distribute i identical objects to n distinct objects. This number is C(n + i - 1, i). If the blue pirates get the remaining k - i pieces of the gold, then we count the number of ways to distribute k - i identical objects to m distinct objects. This number is C(m + i - 1, i).

Thus by multiplication principle, there are $C(m + k - i - 1, k - i) \cdot C(n + i - 1, i)$ ways to distribute the gold among the pirates such that the green pirates get exactly *i* pieces. Since this holds for any $0 \le i \le k$, we have that the total number of ways to distribute the gold among the pirates is $\sum_{i=0}^{k} C(m + k - i - 1, k - i) \cdot C(n + i - 1, i)$.

Since both methods count the same set, we have that

$$\sum_{i=0}^{k} C(m+k-i-1,k-i) \cdot C(n+i-1,i) = C(m+n+k-1,k).$$

- Math 61, Lec 1
- 5. (20 points) Run Dijkstra's algorithm on the following graph to find the shortest path from a to z. Recall that at each stage of Dijkstra's algorithm, one vertex is chosen and given a permanent label which represents the length of the shortest path from a to that vertex. Write down the list of vertices in the order in which they are given permanent labels. Additionally, find the length of a shortest path from a to z.



Answer: a, b, e, c, f, g, d, z. Shortest path from a to z has length 16.