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5. (20 points) Run Dijkstra’s algorithm on the following graph to find the shortest path from a to
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2. (16 points) Solve the vectrrence relation dy= 3 el e I Aoy -7
tl = %t + Y [
e e e
(t- wWt+D=0
E=Y4 5 t=~-I

N
* A= (&) + (0
hp= % = b-&c.'t

= b-c #
A e o TG

n
An = '2_(‘1‘)“ + (-1




