Math 61, Lec 1

Winter 2016

Exam 1

1/25/16

Time Limit: 50 Minutes

Discussid

This exam contains 6 pages (including this cover page) aL

are missing.

You may not use books, notes, or any calculator on this exam.

If your answer contains a number that is impossible to simplify without the use of a calculator,
such as €3, In(3) or sin(3), you may leave answers in terms of e, In, or trig functions.

Partial credit will only be awarded to answers for which an explanation and/or work is shown.

Please attempt to organize your work in a reasonably neat and coherent way, in the space provided.
If you need more space, use the back of the pages; clearly indicate when you have done this.
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1. (7 points) Negate the following implication:
“If you are on the wait list, then you will be enrolled in the class.”
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2. (18 points) (a) Let X be a set with n elements. How many different relations on X are there?
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(b) Let X be a set with n elements. How many different relations on X are there that a@

reflexive? .
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(c) Let X be a set with n elements and let Y 'be a set with m elements, where m > n. How

many different one-to-one functions from X to Y are there?
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3. (25 points) Use mathematical induction to prove that 1+3+5+---+(2n+1) = (n+1)% for
every integer n > 0.
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4. (25 points) Let X be a set. We define the power set P(X ) to be the set of all subsets of X.
For example, if X = {1,2}, then P(X) = {0,{1},{2}, {1,2}}-
Define a relation R on P(Z) by (S,T) € R if and only if S € T, for any sets S and T in P(Z).
Prove that R is a partial order.
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5. (25 points) As in the previous problem, for any set X, we define the power set P(X) to be the

set of all subsets of X.

Consider the sets X = {1,2,3} and Y = {4,5,6}.
Define a function f : P(X) x P(Y) = P(X U Y) by f((S,T)) = SUT, for S € P(X) and

T € P(Y). Prove that f isa bijection.
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