
Math 61, Lec 1 Name (Print):
Winter 2016
Practice Problems Name (Sign):
3/18/16
Time Limit: 180 Minutes Discussion Section:

These problems should give you a rough idea of the difficulty level of the final exam, although they
are not meant to be an accurate representation of the length of the final exam.
You may not use books, notes, or any calculator on this exam.

As usual, unless otherwise stated in the problem, you may leave all answers in terms of
(
n
k

)
, P (n, k),

k!, or any sum, difference, product, or quotient of such symbols.

Partial credit will only be awarded to answers for which an explanation and/or work is shown.

Please attempt to organize your work in a reasonably neat and coherent way, in the space provided.
If you need more space, use the back of the pages; clearly indicate when you have done this.
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1. Prove that every tree is a planar graph. (Hint: since you cannot draw every possible tree, it is
a bad idea to try to do this directly. Instead, prove this by contradiction, using Kuratowski’s
Theorem.)

Answer: Let T be a tree, and assume for sake of contradiction that T is not planar. Then by
Kuratowski’s Theorem, T contains a subgraph homeomorphic to K5 or K3,3. However, both
K5 and K3,3 contain cycles, so since T has a subgraph homeomorphic to one of them, T must
have a cycle. But trees have no cycles, so we get a contradiction.
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2. Prove the combinatorial identity
n2 = 2C(n, 2) + n

using a combinatorial argument.

Answer: Let X = {1, 2, . . . , n}. We count the number of elements in X ×X in two ways.

LHS: Every element in X×X is an ordered pair in which each coordinate comes from X. There
are n ways to choose which element is the first coordinate, and n ways to choose which element
is the second coordinate, so by multiplication principle, there are n2 total elements in X ×X.

RHS: We partition the ordered pairs in X ×X according to whether both coordinates are the
same element, or different elements. If they are different elements, then two elements of X
are represented. There are C(n, 2) ways to choose which two elements of X are represented.
However, the order in an ordered pair matters, so we must choose which of the two elements is
the first coordinate. There are 2 ways to choose which of the two elements is the first coordinate.
Thus, there are 2C(n, 2) ordered pairs in X×X in which the coordinates are different elements.
If the coordinates are the same element, we just choose one element from the n elements in X.
There are n ways to choose the repeated element. Thus, there are n ordered pairs in X ×X in
which the coordinates are the same. Hence, there are 2C(n, 2) + n total elements in X ×X.

Thus, n2 = 2C(n, 2) + n.
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3. Now, prove the same combinatorial identity,

n2 = 2C(n, 2) + n

using induction.

Answer: We proceed by induction. Base case: n = 2 (if you used n = 0 or n = 1, those are

both fine). Then 22 = 4, and C(2, 2) = 1, so 2C(2, 2) + 2 = 4. Thus, the base case holds.

Induction step: Assume that for some fixed n, we have that n2 = 2C(n, 2) + n. We want to
show that it holds for n+ 1.
But (n+1)2 = n2+2n+1, and by the induction hypothesis, n2+2n+1 = 2C(n, 2)+n+2n+1.
Thus,

(n+ 1)2 = n2 + 2n+ 1

= 2C(n, 2) + n+ 2n+ 1

= 2

(
n(n− 1)

2

)
+ 3n+ 1

= n(n− 1) + 3n+ 1

= n2 − n+ 3n+ 1

= n2 + n+ n+ 1

= (n+ 1)n+ n+ 1

= 2C(n+ 1, 2) + n+ 1.

Therefore, (n+ 1)2 = 2C(n+ 1, 2) + (n+ 1), so the statement is true for n+ 1. Therefore, by
induction, the statement is true for all n.
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4. Run Prim’s algorithm on the following graph to find a minimal spanning tree, starting at a.
Write down the list of vertices in the order in which they are added to the spanning tree with
Prim’s, and draw the minimal spanning tree.

Answer: a, b, e, c, f , g, d, z
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5. Let G be the set of all simple graphs. We define a relation R on G by (G,H) ∈ R if and only
if G and H have the same number of vertices of degree 3.

(a) Show that R is an equivalence relation.

Answer: We must show that R is reflexive, symmetric, and transitive.

(i) R is reflexive: Let G ∈ G be arbitrary. Then G has the same number of vertices of
degree 3 as itself, so (G,G) ∈ R.

(ii) R is symmetric: Let G,H ∈ G and assume that (G,H) ∈ R. Then G and H have
the same number of vertices of degree 3, so H and G have the same number of vertices of
degree 3, so (H,G) ∈ R.

(iii) R is transitive: Let G,H, I ∈ G and assume that (G,H) ∈ R and (H, I) ∈ R. Then G
has the same number of vertices of degree 3 as H, and H has the same number of vertices
of degree 3 as I, so G must have the same number of vertices of degree 3 as I. Thus,
(G, I) ∈ R.

Thus, R is an equivalence relation.

(b) For what values of m and n do we have that (K4,Km,n) ∈ R?

Answer: K4 has 4 vertices of degree 3, so we want to find m and n such that Km,n has
exactly 4 vertices of degree 3. But Km,n has m vertices of degree n and n vertices of degree
m. Thus, Km,n has 4 vertices of degree 3 if and only if m = 4 and n = 3 or m = 3 and
n = 4. Thus, (K4,K4,3) ∈ R and (K4,K3,4) ∈ R.
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6. As in the previous problem, let G be the set of all simple graphs. Define a function f : G → G
as follows: for a graph G = (V,E), define f(G) to be the simple graph (V ′, E′), where V ′ = V
and for every v, w ∈ V , we have that the edge (v, w) ∈ E′ if and only if (v, w) 6∈ E. (Aside:
f(G) is called the complement of G).

(a) Draw f(K3,3)

Answer:

(b) Prove that f is one-to-one in the following sense: if f(G) ∼= f(H), then G ∼= H.

Answer: Let G,H ∈ G be arbitrary, and suppose f(G) ∼= f(H). Write G = (VG, EG) and
H = (VH , EH). Then f(G) also has vertex set VG and f(H) also has vertex set VH . Since
f(G) is isomorphic to f(H), there exists a bijection h : VG → VH such that v and w are
adjacent in f(G) if and only if h(v) and h(w) are adjacent in f(H). But v and w are
adjacent in f(G) if and only if v and w are not adjacent in G. Also, h(v) and h(w) are
adjacent in f(H) if and only if h(v) and h(w) are not adjacent in H. Therefore, h is a
bijection from the vertex set of G to the vertex set in H such that v and w are adjacent
in G if and only if h(v) and h(w) are adjacent in H. Hence, G ∼= H.
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7. Suppose that n,m > 3.

(a) If 2 < k < n, how many different simple cycles of length k are there in Kn?

Answer: There are
n!

(n− k)!
simple paths of length k − 1, and then the last step must be

the edge back to the starting point to make it a cycle. However, this overcounts, since
any of the k vertices could be the starting point, and we can traverse the cycle in either
direction.

Thus, the answer is
n!

2k(n− k)!
.

(b) If 1 < k < min{m,n}, how many different simple cycles of length 2k are there in Km,n?

Answer: Such a cycle must hit k of the m vertices on the left, and k of the n vertices on
the right. But by similar reasoning as in (a), we must divide by 2k, since any vertex could
be the starting point.

Thus, the answer is
m! · n!

2k(m− k)!(n− k)!

(c) How many different cycles of length 3 are there in Km,n?

Answer: 0.
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8. (a) For which values of n and m does Kn contain Km,m as a subgraph?

Answer: For m ≤ n/2.

(b) For which values of n and m does Km,m contain Kn as a subgraph?

Answer: Only when n ≤ 2 and m ≥ n− 1.
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9. (a) Write the adjacency matrix for the 2-cube.

Answer:


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0



(b) Using the previous part, find the matrix that gives the number of paths of length 2 from
any vertex to any other vertex in the 2-cube.

Answer:


2 0 2 0
0 2 0 2
2 0 2 0
0 2 0 2
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10. Consider the following graph. Draw the spanning trees that result from performing breadth-first
search and depth-first search, both with respect to the vertex ordering abcdefghij.

Answer: Bread-first search tree is

Depth-first search tree is
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11. Prove that the property “has distinct vertices v, w, and x such that every path from v to w
contains x” is an invariant property.

Answer: Suppose G1
∼= G2 and that G1 has distinct vertices v, w, and x such that every path

from v to w contains x. Let f : V1 → V2, g : E1 → E2 be an isomorphism. Consider the vertices
f(v), f(w), and f(x). Since f is one-to-one, these vertices are distinct in G2. We claim that
every path from f(v) to f(w) contains f(x).
To this end, let P = (f(v), e1, v1, e2, v2, . . . , vn−1, en, f(w)) be an arbitrary path from f(v) to
f(w). Then for each i, g−1(ei) is incident on f−1(vi−1) and f−1(vi), so that:

(v, g−1(e1), f
−1(v1), . . . f

−1(vn−1), g
−1(en), w)

is a path in G1 from v to w. Then by the property, this path contains x, so there exists j such
that f−1(vj) = x. But then vj = f(x), so f(x) is contained in the path P .
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12. Suppose you have four coins that are identical in appearance, but either one of the coins, or
none of the coins, is either heavier or lighter than the others. Additionally, you have one extra
coin that you know is the correct weight. You have only a pan balance. Is it possible to identify
the bad coin, or prove that there is no bad coin, in at most two weighings? If so, draw a decision
tree. If not, prove why not.

Answer: The picture was hard to draw in a manner that made it embeddable in this, so I’ll
explain the method. Suppose that C1, C2, C3, and C4 are the mystery coins, and C is the
extra coin that you know is correct.

First, weigh C1C2 vs C3C. If they are even, weigh C4 vs C. If C4 is heavier or lighter, the
balance will be uneven. If they are even, it means there is no bad coin.

Otherwise, weigh C1C3 vs C4C. If C1C2 is heavier than C3C and C1C3 is heavier than C4C,
then C1 is heavy. If C1C2 is heavier than C3C and C1C3 is lighter than C4C, then C3 is light.
If C1C2 is heavier than C3C and C1C3 is even with C4C, then C2 is heavy. Apply similar
reasoning to the three cases on the other side.

It is interesting to note that without the extra coin, this is impossible to do in two weighings,
for the following reason. The first weighing has to either be 1 vs 1 or 2 vs 2. If the first weighing
is 1 vs 1, then there are 5 different outcomes that are possible if the first weighing is even, and
5 outcomes can’t be sorted out by one weighing. If the first weighing is 2 vs 2, then if one side
is heavy there are 4 outcomes that are possible, and they can’t be sorted out by one weighing.
Thus, you can’t do it in two weighings.
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13. Although it is usually difficult to show that a graph has a Hamiltonian cycle, we also saw that
the complete graph Kn always has a Hamiltonian cycle. In fact, if a graph consists only of
vertices of high degree, we are guaranteed to have a Hamiltonian cycle. Precisely, we have the
following:
Dirac’s Theorem: Let G = (V,E) be a simple graph with n vertices. If δ(v) ≥ n

2 for all v ∈ V ,
then G has a Hamiltonian cycle.

In this problem and the next problem, we will prove Dirac’s Theorem. Suppose G is a simple
graph with n vertices such that δ(v) ≥ n

2 for all v ∈ V . We first show that if x and y are
distinct vertices in G such that (x, y) is not an edge in G, then G has a Hamiltonian cycle if
and only if the graph resulting from adding the edge (x, y) to G has a Hamiltonian cycle.

The forward direction follows easily from the definition of a Hamiltonian cycle. We show the
reverse direction. To that end, suppose that the graph resulting from adding the edge e = (x, y)
to G has a Hamiltonian cycle. If this cycle does not use the edge (x, y), then we’re done. If the
cycle does use (x, y), write the cycle as (x, e, y, e1, v1, e2, . . . , vn−2, en−1, x).
We count how many of the other vertices have edges to x and y, and we do this by counting
indices.
Let T = {i ∈ {1, 2, . . . n − 3} : (vi, x) ∈ E} and let S = {i ∈ {1, 2, . . . n − 3} : (vi+1, y) ∈ E}.
Then |T | = δ(x)− 1 and |S| = δ(y)− 1.

(a) Using the inclusion/exclusion principle, show that |S ∩ T | ≥ 1.

Answer: By inclusion/exclusion, |S ∪ T | = |S| + |T | − |S ∩ T |, and therefore, |S ∩ T | =
|S|+ |T | − |S ∪ T |.

But |S‖ ≥ n
2 − 1, and |T | ≥ n

2 − 1, and we have that |S ∪ T | ≤ n− 3. Therefore,

|S ∩ T | = |S|+ |T | − |S ∪ T |

≥ n

2
− 1 +

n

2
− 1− (n− 3)

= n− 2− (n− 3)

= 1.

Hence, |S ∩ T | ≥ 1.

(b) In the last part, you showed that S∩T 6= ∅. Therefore, there exists i such that (vi, x) ∈ E
and (vi+1, y) ∈ E. Conclude that G has a Hamiltonian cycle that doesn’t use the edge
(x, y).

Answer: Let ê be the edge (vi, x) and let ē be the edge (vi+1, y).
We consider the cycle (y, e1, v1, . . . , vi−1, ei, vi, ê, x, en−1, vn−2, . . . ei+2, vi+1, ē, y). Then
this is a Hamiltonian cycle that doesn’t use the edge (x, y).
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14. Now we use the previous problem to prove Dirac’s Theorem. So far, you have shown that for
any simple graph G with n vertices in which every vertex has degree at least n/2, then G does
not have a Hamiltonian cycle if and only if G will still not have a Hamiltonian cycle if we
connect one pair of non-adjacent edges.

To prove Dirac’s Theorem, we assume for sake of contradiction that there exists a simple graph
G with n vertices in which every vertex has degree at least n/2 that doesn’t have a Hamiltonian
cycle. Then since such a graph exists, we let H be such a graph with the maximal amount of
edges. But since every complete graph has a Hamiltonian cycle, we know that H has some pair
of vertices without an edge between them.

Use the result of the previous problem in order to get a contradiction.

Answer: As stated, we assume that H is such a graph without a Hamiltonian cycle with the
maximal amount of edges. Since H can’t be complete, there must be a pair of vertices x and y
such that (x, y) 6∈ E. But by the previous problem, H doesn’t have a Hamiltonian cycle if and
only if H still doesn’t have a Hamiltonian cycle when we add the edge (x, y). But then when
we add this edge to H, we get a new graph with more edges than H that still doesn’t have a
Hamiltonian cycle. This contradicts the assumption that H had the maximal amount of edges.


